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Abstract 

Matched-field methods concern estimation of source location and/or ocean environ- 
mental parameters by exploiting full wave modeling of acoustic waveguide propa- 
gation. Typical estimation performance demonstrates two fundamental limitations. 
First, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), 
leading to a threshold performance behavior. Second, most matched-field algorithms 
show a strong sensitivity to environmental/system mismatch, introducing some biased 
estimates at high SNR. 

In this thesis, a quantitative approach for ambiguity analysis is developed so that 
different mainlobe and sidelobe error contributions can be compared at different SNR 
levels. Two large-error performance bounds, the Weiss-Weinstein bound (WWB) 
and Ziv-Zakai bound (ZZB), are derived for the attainable accuracy of matched-field 
methods. To include mismatch effects, a modified version of the ZZB is proposed. 

Performance analyses are implemented for source localization under a typical shal- 
low water environment chosen from the Shallow Water Evaluation Cell Experiments 
(SWellEX). The performance predictions describe the simulations of the maximum 
likelihood estimator (MLE) well, including the mean square error in all SNR regions 
as well as the bias at high SNR. The threshold SNR and bias predictions are also 
verified by the SWellEX experimental data processing. These developments provide 
tools to better understand some fundamental behaviors in matched-field performance 
and provide benchmarks to which various ad hoc algorithms can be compared. 

Thesis Supervisor: Arthur B. Baggeroer 
Title: Ford Professor of Engineering 
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Abbreviations 

CRB Cramer-Rao Bound 

DGPS Differential Global Positioning System 

MAP Maximum A Posteriori Estimator 

MFP Matched-Field Processing 

MFT Matched-Field Tomography 

MLE Maximum Likelihood Estimator 

MMSE Minimum Mean Square Error Estimator 

MSE Mean Square Error 

MZZB Modified Ziv-Zakai Bound 

SNR Signal-to-Noise Ratio 

WWB Weiss-Weinstein Bound 
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Notation 

In this thesis, scalar variables are represented in italics (r), vector quantities are set 

in boldface (R), and matrices are represented by capital letters in sans-serif font (R). 

Unless otherwise stated, the following symbols denote: 

= Equality in distribution 

A* Complex conjugate 

AT Matrix transpose 

A* Complex conjugate transpose 

Tr(A) Trace operator 

{Aj : A} Eigenvalues of A 

|A| Matrix determinant 

|| B || Vector norm 

I Identity matrix 

E[-] The expectation of a random quantity 

Re[-] The real part of a complex quantity 

Pr(-) Probability of the bracketed event 

diag(...) Diagonal matrix with elements ... on main diagonal 

Throughout this thesis, explanations for variables immediately follow their first 

introduction in the text or in an equation. 
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Chapter 1 

Introduction 

1.1    Motivation 

Matched-field estimation is a parameter estimation technique that works by matching 

the measured signal field with the modeled signal field. The well-known matched- 

field processing (MFP) and matched-field tomography (MFT) can both be fit into this 

class of parameter estimator [8]. They concern estimation of source location and/or 

ocean environmental model parameters; for each hypothesized parameter set, acous- 

tic propagation through the channel is predicted; correlation between the observed 

signal and the predicted signal defines an ambiguity surface, and an estimate of the 

parameter set is derived from the highest peak. 

Matched-field methods have been developed for about twenty-five years [8]. The 

major theoretical and experimental developments in the past concentrate on the high 

signal-to-noise ratio (SNR) region [6]. However, one often has to deal with low SNR 

scenarios, for example, in passive source localization. For those scenarios, matched- 

field performance has not been well investigated. 

Figs. 1-1 and 1-2 present some examples of source localization under a given shal- 

low water environment (Fig. 4-1) using the maximum likelihood estimator (MLE) [43, 

see also Appendix B]. In the absence of noise (Fig. 1-1), the ambiguity surface is the 

signal field correlation associated with the true source position and each scanning 

source position. Since the typical field is a highly nonlinear function of the embedded 

16 
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Source Range (m) 

Figure 1-1: Example signal field correlation. '+' indicates the true source position. 

parameters, the ambiguity surface is often characterized by a multi-modal structure. 

In addition to the mainlobe around the true parameter, there are many sidelobes. At 

high SNR, most ambiguity outputs have the maximum at mainlobe points (Fig. 1- 

2(a)). However, as SNR decreases, more ambiguity peaks occur at sidelobe points 

(Fig. 1-2(b)); below a threshold SNR, the estimation mean square error (MSE) is 

dominated by sidelobe errors. 

This threshold phenomenon is often understood in terms of the parameter esti- 

mation theory bounds. For sufficiently high SNR or long observation time, the MLE 

performance is predicted by the Cramer-Rao lower bound (CRB) [43]. The CRB 

bounds the variance of small errors around the true parameter and has been inten- 

sively used for the matched-field problem [9, 54, 10, 47]. However, for low SNR and 

short observation time, the CRB is no longer achievable by the MLE due to the side- 

lobe effect, and a large-error bound is necessary to specify the attainable performance. 

For example, the Barankin bound [11, 66] is one of the prevalent techniques for this 

purpose. 

As a local performance bound, the Barankin bound does not exploit any a priori 

parameter information, and is limited to unbiased estimates. An MLE with nonlinear 

parameter-dependence is often biased in the low SNR region; in this case, even a large- 

17 
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Figure 1-2: Example MLE ambiguity surface for input SNR = (a) 0 dB; (b) -8 dB. 
'+' indicates the peak output position; the rectangular box specifies the mainlobe 
region. 

error local bound can still be far less tight. In contrast, some Bayesian (global) bounds 

including the Ziv-Zakai bound (ZZB) [84] and Weiss-Weinstein bound (WWB) [79] 

assume a random parameter model with known a priori distribution, thus free from 

the bias assumption. They are tight and reliable at all SNR regions with the cost of 

additional computational and analytical complexity. 

In this thesis, we formulate the Weiss-Weinstein bound and Ziv-Zakai bound for 

the matched-field estimation problem. In addition to some performance advantages 

mentioned, a Bayesian bound naturally incorporates environmental uncertainty into 

the source localization problem by assuming a random parameter model for each 

uncertain environmental parameter. The major drawback is the increased complexity 

as the number of unknown parameters increases. Nonetheless, for most problems of 

practical interest, effects of the environmental uncertainty are often dominated by 

only a few parameters, so the global performance bounds can be well applied. 

The threshold phenomenon has been investigated in the context of traditional 

array processing for time-delay or bearing estimation, where the ambiguity output 

is often quasi-periodic and independent of the specific parameter value [80, 77], and 
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the global, large-error bounds have been successfully applied [80, 78, 14]. Matched- 

field methods achieve performance improvement over the traditional array processing 

by using a full field signal representation instead of the plane wave assumption. In 

this way, the physics of the signal (and/or noise) structure is incorporated into the 

parameter estimation problem but the resulting ambiguity structure is often more 

complicated. Signal ambiguity function is a measure of the invertibility of the signal 

field. Therefore, issues on the output mainlobe width and sidelobe levels are very 

important for the development of any matched-field algorithm, which are investigated 

in this thesis in the context of the MLE. 

The full field signal solution, however, requires an accurate environmental model, 

which is often unavailable. In many practical applications, an environmental model 

is assumed per one's best knowledge on the test site. It is very common that this 

assumed model could differ from the true one, leading to seriously biased estimates 

even at high SNR. This is the so-called mismatch problem [8]. There are considerable 

efforts toward analyzing this mismatch problem, but a quantitative link between the 

size of mismatch and the mean square error in parameter estimation has not been es- 

tablished yet. Developments in this thesis lead to such a performance analysis method 

for any replica-correlation-based estimation problem with environmental/system mis- 

match. 

1.2    Thesis Outline 

The thesis is organized as follows. 

Chapter 2 first gives a brief introduction to some involved areas including sound 

waveguide propagation, matched-field parameter estimation and performance bound 

in parameter estimation. The existing research on matched-field performance analysis 

is then reviewed. 

Chapter 3 applies the Bayesian approach to matched-field parameter estimation. 

A general framework for Bayesian parameter estimation is first defined. Under this 

framework, three Bayesian bounds, Bayesian Cramer-Rao bound, Weiss-Weinstein 
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bound and Ziv-Zakai bound, are reviewed. These bounds are then developed using a 

general random signal model typical of the matched-field problem. 

Chapter 4 investigates some ambiguity issues in the matched-field problem. These 

include the origin of ambiguities in terms of the normal modes representation and the 

mainlobe ambiguity in terms of parameter coupling. Behavior of each performance 

bound is also discussed in relation to the ambiguities. To analyze the effects of 

different ambiguity points, either mainlobe or sidelobe points, some approximations 

based on the two-point estimation error probability are exploited. These results are 

then used to find the threshold SNR in matched-field parameter estimation. 

Chapter 5 proposes a modified Ziv-Zakai bound to incorporate environmental/ 

system mismatch. The mismatch analysis is then developed in the context of the 

matched-field problem, and demonstrated using a bearing estimation example, in 

which the array tilt angle is mismatched. 

Chapter 6 first discusses some computational issues that arise in evaluation of 

each bound in relation to the field sensitivity and ambiguity. The theoretical bounds 

are then tested to the MLE simulations of source localization and environmental 

parameter inversion for a typical shallow-water propagation environment. Effects of 

environmental uncertainties and mismatch on source localization are investigated as 

well. Finally, the theoretical predictions are compared to the real data processing. 

Chapter 7 summarizes the thesis and proposes issues for future efforts. 

Appendix A gives the derivations of the Weiss-Weinstein bound in the matched- 

field problem. 

Appendix B derives the matched-field maximum likelihood estimate for source 

localization and estimation of environmental parameters. 

Appendix C addresses the two-point estimation problem. The related error prob- 

ability is derived using both narrowband and broadband (incoherent multi-tone) data 

models. These results play a significant role for evaluation of the Ziv-Zakai bound 

(both standard and modified) as well as ambiguity analysis. 

Appendix D defines the signal-to-noise ratio used in this thesis. Note that unless 

otherwise stated, we use input, sensor-averaged SNR through the entire thesis. 
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Chapter 2 

A Review of Matched-Field 

Parameter Estimation and 

Performance Analysis 

2.1    Matched-Field Parameter Estimation 

Matched-field processing (MFP) has been intensively investigated in ocean acous- 

tics [8, 39], aiming at accurately and remotely localizing underwater targets. It is a 

generalization of the traditional plane wave beamforming in that the plane wave beam- 

forming matches the measured field with the plane wave for each look direction, while 

MFP matches the measured field with the full field solution to the sound waveguide 

propagation for each scanning source position. Therefore, when the environmental 

model is accurate, a significant performance improvement by MFP is expected. On 

the other hand, because MFP source localization requires precise environmental infor- 

mation, any mismatch between the assumed environmental parameter values and the 

actual values could degrade the performance seriously. Thus, matched-field tomogra- 

phy (MFT) is concerned with estimation of environmental parameters [71]. Similar 

to MFP, MFT exploits the interference pattern generated between array sensors but 

reverses the roles of source position and environmental information. 
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Figure 2-1: Model for the seismo/acoustic environment. 

Developments of matched-field methods are closely related to developments in 

physical modeling of acoustic waveguide propagation, numerical simulation of the 

acoustic field, and array signal processing techniques. Some of the issues relevant are 

discussed in the following sections. 

2.1.1    Normal Modes Representation of the Signal Field 

Consider a stratified waveguide model for the seismo/acoustic environment shown in 

Fig. 2-1, which consists of water column, multi-layer sediment and basement, and 

can be either range-independent (as plotted) or dependent. A point source radi- 

ates narrowband or broadband signal and the acoustic field is sampled by a vertical 

receiver array. The modeled acoustic field is often taken from the solution, exact 

or approximated, of the wave equation governing the sound propagation in a given 

environment. 

Let r = (r, z) denote the position coordinates, where r is the range and z is the 

depth. Consider a point source at r0 = (0,2o)- Given the sound velocity profile c(z) 

(in the sediment layer this is cp(z) for compressional wave-speed, or cs(z) for shear 

wave-speed) and the density stratification p(z), the frequency-domain wave equation 
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for the resulting pressure field is [32]: 

p(z)V M Vp(r) *,„w^_    J(r) + k2{z)p(v) = -2-^5{z - z0), (2.1) 
r 

where k(z) = |?4 is the wavenumber, and / is the frequency. 

Coupled with the wave equation are the boundary conditions between different 

medium layers, such as the air-sea interface and the water-sediment interface. Re- 

gardless of the simple form of the wave equation, there is no exact solution for the 

wave field, except for some extremely simple cases. Various approximations have been 

developed, for example, the wavenumber integration model, the normal modes model, 

and their coupled versions for range-dependent environment [42]. Among them, the 

method of normal modes is often used because its simple implementation and good 

physical interpretation. Using the normal modes decomposition, the pressure in the 

far field has the form 

v/2^ei7r/4 »max eiknr 

where un(z) denotes the modal depth eigenfunction for mode n, and kn denotes the 

corresponding horizontal wavenumber. The wave attenuation is often included as 

the imaginary part of the wavenumber. nmax is the number of propagation modes, 

which is determined by system/environmental parameters. Some leaky modes, which 

have deeper bottom penetrations, can also be included, but their contributions are 

insignificant at long-range due to large attenuation. 

Solution to both the unit point source wave equation in (2.1) and the boundary 

conditions defines the Green's function, which is the transfer function of an ocean 

propagation system. Obviously, it is a function of source-receiver configuration as 

well as environmental information. The receiver output can then be expressed as a 

product of the input source term and the Green's function. 

A number of codes have been developed to simulate the acoustic field for a given 

environmental configuration. Typical normal modes codes include KRAKEN [56] and 
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SuperSnap [41]. Others include OASES wavenumber integration codes [62], and RAM 

parabolic equation codes [25]. Despite their strengths in different special scenarios, 

they often give consistent field replicas for general propagation problems. 

2.1.2    Geoacoustic Modeling and Field Sensitivity to Geoa- 

coustic Parameters 

According to Hamilton [36], a geoacoustic model is defined as a model of the real 

sea floor with emphasis on measured, extrapolated, and predicted values of those 

properties important in underwater acoustics and those aspects of geophysics related 

to sound transmission. A complete model includes water-mass data, a bathymetric 

chart, and the thickness and material properties for each sediment or rock layer. 

The typical material properties include compressional wave-speed, shear wave-speed, 

compressional wave attenuation, shear wave attenuation, and density. In general, 

these properties are depth-dependent and frequency-dependent. Moreover, they may 

vary significantly over geographical position, so it requires tremendous efforts to detail 

the geoacoustic model for even a small ocean area. As a result, these properties are 

usually approximated, thus limiting the modeling accuracy for acoustic propagation 

in the ocean. 

Geoacoustic parameters enter the sound propagation via strong signal boundary 

interactions. Therefore, the reflectivity property at the boundary plays an impor- 

tant role to couple the bottom effects to the sound propagation. A particular case 

of interest is the reflection from a high velocity half-space, where a total internal 

reflection takes place. The velocity contrast above and below the boundary deter- 

mines a critical angle of reflection [20]. For the lossless case, when the incident angle 

exceeds the critical angle, the magnitude of the reflection coefficient is exactly one, 

and the bottom property dependence is in the phase term. This phenomenon leads 

to the trapped modes representation of the field. When the incident angle is less 

than the critical angle, the phase term is zero and the bottom property dependence 

is in the attenuated magnitude term, which leads to the leaky modes representation. 
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However, for the lossy bottom, both the trapped and leaky modes are affected by the 

bottom attenuation, and the total reflection no longer exists. The above results sug- 

gest that the presence and the value of the sound velocity gradient are of considerable 

importance in the sound propagation and its dependence on the bottom environment. 

Capability of the matched-field tomography to estimate the bottom geoacoustic 

parameters is from the field sensitivity to these parameters, and this field sensitivity 

issue has long been an important research topic aiming to compare the influence of 

each parameter on the field with respect to depth, range and frequency. In a specific 

environment, this leads to ordering the parameters from the most sensitive to the 

least sensitive, and this ordering basically determines the relative performance in 

estimation of each individual parameter. 

Seen from the normal modes field representation, the term of exp (iknr)1 may play 

a key role in the sensitivity issue. A small perturbation of the horizontal wavenumber 

due to a small parameter perturbation is amplified by range, particularly at long- 

range. In Ref. [45], the field sensitivity is considered as the combined effects of (1) 

a uniform change of the long-range phase common to all modes; (2) a nonuniform 

(jumbling) of the relative phase between modes; and (3) changes in energy loss. If the 

first factor dominates, a narrowband wavenumber spectrum assumption is quite rea- 

sonable. However, if the second factor dominates, we have to deal with an equivalent 

spatial wideband process. 

It is worth noting that although a strong field sensitivity increases the estimation 

performance, it makes the estimation subject to environmental mismatch. 

2.1.3    Ambiguity Function in Array Processing 

Various matched-field processing algorithms have been developed, most of which are 

based on traditional array processing techniques in radar/sonar applications. A 

matched-field algorithm estimates the field distribution versus a possible location/ 

environmental parameter set, and usually produces an output in terms of the an> 

xAn equivalent time-delay expression is exp (j'27r/0 ■ rn{r)), where /0 is the carrier frequency and 
Tn(r) is the propagation delay for mode n. 
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bignity function.   An estimate of the unknown parameter set is then obtained by 

locating the maximum output (best signal match). 

Let G(f,0) be the Green's function across the receiver array associated with a 

given set of source/environmental parameters, 0. For two sets of specific parameter 

values, 0i and 92, a simple definition of the ambiguity function is the normalized field 

correlation [8], i.e., 

T{f,0i,02) = 
G(/A)   Vf   G(f,02) 
G(/A)!I7   VI|G(/,02) 

(2.3) 

Despite its simple form, most matched-field outputs can be expressed in terms of this 

fundamental component. 

The MFP/MFT ambiguity function often demonstrates some complicated multi- 

modal structures, particularly when the dimensionality of the parameter space is high. 

Some global optimization algorithms such as simulated annealing [26] and genetic 

algorithm [33] have been developed in searching the multi-dimensional parameter 

space. Currently, performance analyses on these ad hoc methods are often based on 

Monte Carlo simulations. 

2.2    Performance Bounds in Parameter Estimation 

Parameter estimation performance bounds have been studied in the information the- 

ory and signal processing literature since the 1940s. To reyiew the existing bounds, let 

us define a general model for any parameter estimation problem, as shown in Fig. 2-2 

[72]. The model consists of four components defined by 

Parameter space consisting of deterministic or random parameters, 0; 

Observation space consisting of observation vectors, R; 

Probabilistic mapping from parameter space to observation space governing 

the effect of 0 on observations, which can be described by the probability den- 

sity function of the observation conditioned on 0, p(R ; 9) for non-random 

26 



K-Dimensional 

Estimate  8(R) 

9   or p(9) 

Estimation Rule 

E-Dimensional 

Parameter Space  0 

Mapping: 

P(R;e)    or   P(R|8) 

N-Dimensional 

Observation Space Q, 

Figure 2-2: General parameter estimation model (from [72]). 

parameters, or p(R | 0) for random parameters; and 

Estimation rule mapping the observation space into estimates of the parameters, 

0(R). 

In general, the estimation rule is chosen according to some criterion, which is 

stated in terms of the quality measure of the estimation procedure. For the single- 

parameter case, typical performance measures include bias, variance, and mean square 

error as defined below: 2 

Bias E §(K) - e], 

Variance Var (fl(R)) = E   (fl(R) - E [ö(R)| Vl, 

Mean Square Error (MSE) E (<?(R) -e) 

There is a simple relationship coupling these three quantities: 

Var (<?(R)) = E [(0(R) - 0)2] - E2 [<?(R) - e\ (2.4) 

2For the vector parameter case, one can define the MSE matrix in a similar way as given in 
Section 2.2.1 and 3.1. 
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In the random parameter case, the mean square error is often of interest, while 

in the non-random parameter case, the bias and variance are more pertinent mea- 

sures. However, most practical parameter estimation algorithms are developed from 

ad hoc considerations, and calculations of the performance measures for these algo- 

rithms are usually difficult, if not impossible. Rather than approaching the problem 

directly, people have developed lower bounds on the mean square error to specify the 

fundamental performance limits regardless of any specific estimation method. 

There are two types of performance bounds, local bounds and global bounds, 

which bound the local and global mean square errors for non-random and random 

parameter models, respectively. Most of them originate from the corresponding co- 

variance inequality as elaborated in the following. 

2.2.1    Covariance Inequality for Unknown Deterministic Pa- 

rameters 

Consider a set of unknown, but non-random parameters 0. Let T(R) be a statistic 

of the observation with mean E[T; 0] = 0 + b(0), where b(0) is the bias, and 

£[(•); 0]= /(•)p(R.;0)dR.. (2.5) 
Jn 

Denote T(R, 0) as an arbitrary matrix-valued function with finite second moment. 

Then the following covariance inequality [40, 48, 2] sets up a bound on the MSE of 

the statistic T: 

£(0) = E [(T - 0)(T - 0)T; 0] > b(0)br(0) 

+ E[{T- E[T; 0])TT; 0] • (£[TYT; 0])_1 • E [T(T - E[T; 0])r; 0] . (2.6) 

Note that there exists a bias term in the above covariance inequality. Because the 

precise value of the bias is often unavailable, this type of bound is limited to unbiased 

estimates 3. Hence in the sequel, the bias term is ignored. 

3The first order bias of a maximum likelihood estimator has been investigated in Refs. [53, 69]. 
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A series of bounds can be defined by choosing different T(R, 0) [2]. For example, 

1. Cramer-Rao and Bhattacharyya bounds 

T(R, 0) 

The MSE matrix is bounded by 

d 
p(R;0)   80 

p(R;0). (2.7) 

E(0) > rD\0), (2.8) 

where 

JD(ö) = E 
<|p(R;fl)-äfrP(R;fl) 

p2(R;0) 6> (2.9) 

is the Fisher information. This is the well-known Cramer-Rao bound. An extension 

of (2.7) to high-order derivatives leads to the Bhattacharyya bound [2]. 

2. Barankin bound 

T(R, 0) 
p(R; 0) 

p(R;01)-p(R;0) 

p(R;0*)-p(R;0) 

(2.10) 

The resulting bound is the multi-dimensional Chapman-Robbins bound [21]: 

where 

(2.11) 

ß{B1,...,9K} = [01-e,..;0K-0], (2.12) 

and 

(B^i,....^})^ = E 
"p(R;*j) 
.p(R;0) ; 0t (2.13) 
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This is also known as the Barankin-type bound [11]. 

The CRB and Bhattacharyya bounds are small-error bounds, which bound the 

performance in the neighborhood of the true parameter. The CRB is the most popular 

one because it is usually fairly easy to evaluate. It can be asymptotically approached 

by the maximum likelihood estimator at sufficiently high signal-to-noise ratio or long 

observation time [43]. However, for a given observation time, there often exists an 

SNR threshold below which the MLE MSE departs from the bound. This is the so- 

called threshold phenomenon and is due to the globally ambiguous estimation output 

and usually associated with the non-linear parameter estimation problem [72]. 

In contrast, the Barankin-type bound is the large-error bound in that it attempts 

to capture the effect of ambiguity errors through a set of test points within the given 

parameter space. It is tighter than the CRB (that means better performance predic- 

tion) and has been used for analyzing the threshold phenomenon [82, 83]. However, 

it is not well manageable in choosing the optimum set of test points (cf. Section 2.3.2 

for more discussions). 

For the local bounds discussed, two issues need to be clarified. First, as mentioned 

before, a local bound is limited to unbiased estimates; but in the ambiguous region, 

estimates are often biased. Second, the local bound doesn't exploit any a priori 

information about the parameter. Since the noise dominates the low SNR region, the 

estimation error is determined by the a priori parameter distribution. Due to the 

above two factors, these local bounds cannot be bounded in themselves in the very 

low SNR region, resulting in impractical results. To obtain meaningful results for all 

regions of operation, a global bound is usually preferred. 

The global bound is an extension of the previous results to the framework of 

Bayesian estimation. It assumes an a priori random parameter model and bounds 

the averaged mean square error over the a priori distribution, thus free from the bias 

assumption. As the main approach in this thesis, the global bound is reviewed and 

discussed in detail in Chapter 3. 
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2.3    Performance Bounds in the Matched-Field 

Problem 

Performance bounds have received considerable attentions from the beginning of the 

matched-field processing research. They help to understand the fundamental limi- 

tation in parameter estimation by combining the propagation physics, environmen- 

tal uncertainties, source-receiver geometries, and signal structure and statistics [10]. 

Thus they provide baselines to which the performances of various ad hoc algorithms 

can be compared. 

A performance bound is derived according to a pre-defined data model. There are 

several types of data models currently used in the matched-field problem. Although 

expressed in different ways, they may all be fitted into a general form: multiplying the 

source signal with a Green's function and summing with an additive noise term [10], 

that is, 

R(/,0) = 6(/)Ss(/)G(/,0) + N(/,0),    /GA/, (2.14) 

where 

R(/, 0) is the complex envelope of the received signal; 

0 is the unknown source or environmental parameter set; 

b(f) is a random process incorporating amplitude and phase variability; 

Ss(f) is the Fourier transform of the source signal; 

G(/, 0) is a vector of Green's function for the propagation to the receiver array under 

the given source and channel configuration; 

N(/, 0) is a stationary noise vector; and 

A/ is the signal bandwidth. 
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Both the deterministic and random models have been considered for the source 

signal, but usually the latter one is more appropriate. Under the random signal 

model, two different types of sources can be applied: 

1. Coherent across frequencies. b(f) = 6, a scalar random variable with variance 

o\. Ss(f) is the source signal, which can be an M sequence or FM sweep. 

2. Incoherent across frequencies. Ss(f) is set to one and b(f) is chosen to have a 

power spectral density equal of the source, Sb(f) = |5S(/)|
2. 

Item 1 is a typical model in ocean acoustic tomography [52, 10], while item 2 is a 

typical model for matched-field processing or matched-field tomography [10], in which 

the source is a stationary random process. 

Except for the noise tomography case (Ss(f) = 0), the noise is generally as- 

sumed to be independent of the chosen parameter with a spectral covariance matrix 

Kn(/) = T0Sn(/), where T0 is the observation time,4 and Sn(/) is the power spectral 

density estimate of the noise. This is reasonable since the total field environmental- 

dependence is often dominated by the signal environmental-dependence. 

The random signal and noise are often assumed to be Gaussian; therefore, the 

observation covariance matrix is important in deriving the performance bound. Under 

the data model for MFP/MFT, the covariance matrix for the observation vector 

R(/, 9) is given by: 

KR(/, 9) = E\K&] = T0Sb(f)G(f, 9)G\f,-0) + T0S„(/). (2.15) 

For the received signal with M uncorrelated frequency components, the covariance 

matrix KR(0) is a block-diagonal matrix with KR(/, 9) as the diagonal element. 

4Introduction of T0 is from the power spectral density estimation based on the periodogram of a 
time-limited wide-sense stationary random process [81]. 
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2.3.1    Cramer-Rao Bound 

The Cramer-Rao bound has been well developed for matched-field methods [9, 47, 

54, 10, 63, 18, 19, 67, 27]. Given the complex Gaussian observations, the {i,j)th 

element of the Fisher information matrix is [9]: 

[SDUO) = Tr "■tfW ( £KR(*)) K-(*) (AKRW 

For the MFP/MFT data model used here, it has the form [10, 27]: 

M , 

\^\m   =   E S?(/m)7(/m, 0) ( Re U2(fm, 0)UAfm, 0) - k(fm, 0)l}(fm, 9) 

(2.16) 

m=l 

+ j(fm,e)Re[li(fm,9)}Re[lj(fm,0)}\   ' (2.17) 

where 

d2{fm,0) = Gt(/m,o)S„1(/m)G(/m,0) is the signal-to-noise ratio for the Green's 

function referenced in the space of the additive noise; 

h(fm,0) — Gt(/m,0)S~1(/m) f J:G(/m,0)j is the measure of the mean of the pa- 

rameter sensitivity in the same space; 

h,j(fm,0) = yS;Gf{fm,9)J S^C/m) (j-G(/m,0)J is the measure of the convexity 

of the parameter sensitivity; and 

7(/m,0) =2/(l + Sb(fm)d2(fm,0)). 

In many adaptive searching algorithms, the resolution represented by (2.8) is often 

used as the local parameter sensitivity measure to adjust the search space; therefore, 

the resolution inhomogeneity and parameter coupling introduced by the waveguide 

physics can affect the convergence performance of an adaptive algorithm significantly. 

Refs. [63] and [27] have applied the CRB to analyze these issues, and the results 

show that a careful choice of the parameter set is important for robust matched-field 

parameter estimation. 
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In Refs. [18, 19], a universal wave approach to ocean acoustic tomography is 

proposed and a CRB is derived for sound speed field reconstruction. The derived 

results are used to determine the information required to invert the field for different 

scales of field inhomogeneities, and then set up a statistical basis for modal, ray and 

interference acoustic tomography. 

Despite its simple analytic form, the CRB is merely a high-SNR and asymptotic 

bound. For low SNR and short observation time, the reliability of the CRB is always 

doubted [10]. 

2.3.2    Barankin Bound 

A few papers have addressed the threshold phenomenon in matched-field processing. 

Particularly, the Barankin bound has been applied to the problem of source localiza- 

tion. In Ref. [66], the random signal model is considered, and multiple snapshots of a 

single frequency component are used. The signal-to-noise ratio is added to the source 

and environmental parameter set, ^. Accordingly, the unknown parameter vector is 

given as 0 = [\I/T, SNR]T, and the data covariance matrix for each snapshot has a 

similar form in (2.15). 

Under the given model, the Barankin bound in (2.11) has 

(B{flll...^})y = (B'{öl,...^})y - 1 (2-18) 

with 

/ß/ \ KR(/Q, 0)  

^   {Ou-.-MJij     |KR(/0,©i)l|KR(/o,Oi)||Kä1(/o,ei) + Kä1(/o,öi)-KR1(/o,0)r 
(2.19) 

B'ij measures the field similarity associated with the test point and the true pa- 

rameter point. Clearly, to get a tighter bound, the test points should be selected so 
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that 

KR(/OJ0O~KR(/O,0) (2.20) 

for Oi different from 9. These points actually correspond to the ambiguity points on 

an ambiguity surface. This could explain why the Barankin bound is frequently used 

for analyzing the threshold phenomenon. 

In Ref. [66], the environmental uncertainties are represented by uncertainties in 

the modal horizontal wavenumber, and to save the computational effort, only the 

largest component of the uncertainties is retained as the environmental parameter in 

\&. The test points are selected based on the diagonal term of the matrix B'. First, 

J candidate test points are chosen around each sidelobe. Then, the K test points 

yielding the lowest values in the diagonal of B' are selected. This searching-based 

approach may find some test points contributing most to the bound as long as the 

candidate points cover the entire ambiguity region, but obviously not in an optimal 

way. 

The bound's evaluation results are tighter than the CRB and demonstrate a 

threshold behavior. However, the predicted threshold SNR is 3 - 5 dB lower than 

the simulations using the maximum likelihood estimator and the bound is still far 

less tight in the transition region. As the SNR further decreases, the bound even 

diverges. These behaviors are attributed to the sub-optimality in choosing the test 

points and the local characterization of the bound as discussed in Section 2.2.1. 

In addition, (2.19) holds if and only if 

KR(fo,Oi) + KRH/O,^) - K^1 (/„,*) (2.21) 

is a positive definite matrix. This condition significantly reduces the number of avail- 

able test points and limits the application of the Barankin bound in the MFP/MFT 

problem. 
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2.4    Summary 

Overall, most current performance analyses in matched-field parameter estimation 

concentrate on the local bound, the CRB or the Barankin bound. As we discussed in 

Section 2.2.1, both of them require unbiased estimates and don't exploit any a priori 

information about the parameter. Moreover, the Barankin-type large-error bound is 

difficult to evaluate and even shows some instability in certain estimation problems [1]. 

In contrast, some global bounds assume a random parameter model with a known 

a priori distribution, which is consistent with the implementation of most current 

MFP/MFT algorithms in searching the parameter space. Besides, they bound the 

averaged mean square error over the parameter interval; if the local performance 

shows a small variation across the interval, a global large-error bound describes the 

local mean square error at each parameter point well. 
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Chapter 3 

Bayesian Bounds in Matched-Field 

Parameter Estimation 

In this chapter, a general framework for performance analysis in Bayesian estimation 

is first introduced. Under this framework, a few Bayesian performance bounds are 

reviewed, and some of the new observations are also pointed out. The data model 

used in this thesis is then defined, and three Bayesian bounds (Bayesian Cramer-Rao 

bound, Weiss-Weinstein bound and Ziv-Zakai bound) are developed accordingly for 

the matched-field problem. 

3.1    Bayesian Performance Bounds 

In the framework of Bayesian estimation, the unknown parameters are treated as 

random variables. For a single parameter 6, the mean square error is bounded from 

below by 

e2 = E (ö(R)-ö)2] >e, (3.1) 

where the expectation is implemented with respect to both the observation and the 

parameter, and £2 can be an arbitrary bound. 

For the vector parameter case, the bound is usually a matrix, E , bounding the 
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MSE matrix as stated below: 

E = £ (ö(R)-O)(ö(R)-ö)' > H. (3.2) 

One can obtain the bound for each individual parameter by multiplying the corre- 

sponding matrix with a weighting vector a: 

aTEa > aT~a. (3.3) 

For example, choosing a = [1 0 0 ...f gives the bound for the first parameter. 

An off-diagonal term of E is an indication of parameter coupling, which specifies 

how the error in estimation of one parameter correlates with the error in estimation of 

another parameter. To see how well this off-diagonal term is predicted by the bound, 

let us consider the case with two parameters. Because we must have 

|E-S|>0, (3.4) 

we have 

(En - ~n) • (E22 - ~22) > |E12 - H12|
2. (3.5) 

If En -> En and S22 —> £22, then Ei2 —> E12. Otherwise, Ei2 and Ei2 could differ 

significantly. Therefore, this coupling term is closely predicted only if the mean square 

error for each individual parameter is closely predicted by the bound (e.g., the CRB 

at high SNR). 

Most Bayesian bounds, such as the Bayesian CRB and Weiss-Weinstein bound, can 

be derived from a general covariance inequality developed by Weiss and Weinstein [78]. 

To state this covariance inequality, we denote 0 = \9\, ..., 9Np]T and specify a set of 

real functions of the observation and the parameter set, {^(R, 0)}^ (Nt > Np), 

which satisfy the following conditions: 

(a) E[Vj(R, 0); R] = 0,   for almost every R,    j = 1, ...,Nt; 
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{b)\E[6iyj(R,0)]\<oo,    i = l,...,Np, j = l,...,Nt; 

(c) The Nt x Nt matrix Q, defined by [Q]0- = ^^(R.ÖJtf^R.Ö)], is positive 

definite. 

Then the MSE matrix for vector parameter estimation is bounded by 

E > WQ-1WT, (3.6) 

where W is an Np x Nt matrix with its (i,j)th component given by 

\yr\ij = E[0i*j{R,o)]- (3-7) 

Thus a series of bounds is obtained by choosing different {^(R, 9)}^v 

The first one of interest is ^(R, 0) — 9j — E[9j | Rj. The resulting bound is 

E>E[(0- E[0 | R])(0 - E[0 \ R])T] . (3.8) 

This corresponds to the conditional mean estimator, whose performance establishes 

the greatest lower bound for the Bayesian estimation problem [81]. Unfortunately, 

in general, even numerically a direct evaluation of this performance is very difficult. 

Some weaker but simpler lower bounds are of more interest. 

One exception is the Ziv-Zakai bound (ZZB), which is not derived from the above 

covariance inequality. Instead, the ZZB is derived from the detection theory, and can 

only bound the mean square error for each individual parameter. The relationship 

between the ZZB and the other covariance inequality-based bounds has not yet been 

established [13]. 

3.1.1    Bayesian Cramer-Rao Bound 

The Bayesian CRB is first formularized by Van Trees [72, pages 72-73]. It can also 

be derived from (3.6) by choosing 
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W = ^,  i = i,....iv„ so,. 

where p(R, 0) is the joint pdf of R and 0. 

The BCRB states for the MSE matrix: 

(3.9) 

2~i    -^    Jrp      , (3.10) 

where Jy is the global Fisher information defined by 

[h]ij - -E 
d2lnp(R,0) 

(3-11) 

p(R, 0) is the product of the prior probability density, p(0), and the conditional 

probability density, p(R\0), so the global Fisher information, JT, can be further de- 

composed into two terms: 

[Jr]ij -E 

IJ 

d2\np(R\0) 
dOidOi 

E 
d2 In p(0) 

dOidOj 

[JD}ij(9)-p(0)de + [}A}lj, (3-12) 

where Jr>(0) is the local Fisher information at 0 and J^ is the a priori parameter 

information term. 

It is well known [43] that for non-random parameter estimation, the local CRB 

is achieved by the MLE at high SNR or long observation time. In other words, 

considering the single parameter case, we have asymptotically for the MLE mean 

square error 

e2(6) = J^(9). (3.13) 

For the random parameter case, this is not always true. To demonstrate this, we 

assume a discrete set of parameter values, {#;}, and note that the MLE mean square 
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error is averaged over the parameter space, i.e., 

<? = xy^-Ä» 
i 

=   Y.Jn&)-P&)- (3-14) 
i 

We have used (3.13) in the second equality. In the asymptotic region, the a priori 

term can be ignored and the BCRB is specified by 

2 _ l 

It can be shown that (3.14) is greater than (3.15) [38, page 130, and note that 

J2iP(9i) — 1]- They are equal if and only if JD(0i) is not a function of 0*. This 

is an additional condition to achieve the Bayesian CRB using the Bayesian MLE. For 

the usual time-delay/bearing estimation problem, this condition is often satisfied. 

Note that the BCRB requires p(R, 0) be absolutely continuous with respect to 0 

for almost every R in the observation space. Extensions of (3.9) to high-order deriva- 

tives and finite difference lead to the global Bhattacharyya bound and the Bobrovsky- 

Zakai bound, respectively, but subject to more strict regularity conditions [79]. To 

satisfy those conditions, a random parameter model with Gaussian distribution is 

preferred. Otherwise, some special smoothing processing is a must, as discussed in 

Section 6.1.1. 

For low SNR and short observation time, since the BCRB cannot account for the 

sidelobe effects, it often gives too optimistic performance prediction. To predict the 

large error performance in this case, a more appropriate bound is desired. 

3.1.2    Weiss-Weinst ein Bound 

Weiss and Weinstein proposed the following choice of \J>_,-(R, 0) [78]: 

^•(R,e) = L*(R; 0 + 1^,0) -L^R; 0-^,0),    j = l,...,Nt, (3.16) 
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where 

L{B.;O1,02)=p(R,O1)/p{R,02), (3.17) 

and hj is called the jth test point in the parameter space. 

The Weiss-Weinstein bound is then obtained by substituting (3.16) into (3.6), 

which states 

E>   max HQ_1HT, (3.18) 
{SJ, hj} 

where H = [hi, ..., h#J is an Np x Nt matrix of vector parameter test points, and 

the {i,j)ih element of the Nt x Nt matrix Q is given by ■ 

[Qh = 

E [(LS'(R; 9 + hj, 9) - L^R; 9 - hi: 9)) (J/>(R; 9 + hj, 0) - ^-^(R; 9 - h,-, Ö))] 
E [Ls' (R; 9 + hh9)]E [L'i (R; 9 + hj, 9)} ' 

(3.19) 

For a special case of Sj = 1/2, j = l,...,Nt (which is actually required for a 

zero-mean Gaussian data model as discussed in Section 3.2.3), the matrix Q can be 

expressed as 

rnl   _9   exp{/x(l/2, hj - hj)} - exp{/x(l/2, h{ + h,-)} 
Mij     "' exp{/x(l/2,hi)}.exp{Ax(l/2,hj)} ' ^'^ 

and ß(s, h) is defined by 

//(«, h) = In f dR [ d9p1~s{R, 9)ps(R, 9 + h). (3.21) 
Jn      Je 

The WWB has several advantages over the previous bounds. First, it is free 

from regularity conditions on the data probability model. Second, it is shown in [79] 

that the BCRB is a special case of the WWB with hj going to zero along the jth 
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dimension. x Therefore, by maximizing the bound with respect to the test points, we 

are sure to obtain a tighter bound than the BCRB. 

A few papers have applied the WWB to time-delay/bearing estimation problems. 

In Ref. [79], the bound is applied to estimation of the time-of-arrival of a pulse 

in the additive random noise. The performance at lower SNR levels is accurately 

predicted by the bound. At higher SNR levels, the bound is shown to be tighter 

than the Barankin bound. Ref. [79] also applies the WWB to two-channel time-delay 

estimation. The results show that the threshold SNR predicted by the WWB is much 

higher than that by the Chapman-Robbins bound. The bound also shows a similar 

performance to the Ziv-Zakai-type bound (cf. Section 3.1.3), which is close to that of 

the cross-correlation estimation with sufficiently large time-bandwidth product. It is 

interesting to observe that a tight bound is obtained by the choice of h equal to the 

period of the quasi-periodic correlation function. This suggests that the WWB could 

help to analyze the ambiguity behavior in the problem. 

In Ref. [29], the WWB is applied to estimation of the direction-of-arrival using 

a two-dimensional antenna array and shows a tighter result using the WWB than 

using the CRB. Ref. [14] compares several different bounds in the bearing estimation 

problem. The results show that the Weiss-Weinstein bound and Ziv-Zakai bound well 

predict the behavior of the maximum likelihood estimator in all SNR regions while 

the Barankin bound and particularly the CRB fail in the low SNR region. 

3.1.3    Ziv-Zakai Bound 

In the ambiguity region, the estimation problem can be decomposed into (1) interval 

detection and (2) parameter estimation within the chosen interval [72]. This has 

encouraged people to resort to detection performance analysis for development of large 

error bounds in parameter estimation. For example, the Ziv-Zakai bound (ZZB) [84, 

16, 22] is derived on the basis of the probability of deciding correctly between two 

hypotheses, H0 and Hi, corresponding to two possible parameter sets, 0 and 0 + A, 

belong [29] later has shown this is not true if the parameter distribution, p(9), has a compact 
support and is not zero at the end points. 
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V(g(h)) 

g(h) 

Figure 3-1: Valley filling function. 

respectively. A can be considered as the vector parameter perturbation. 

For a single parameter uniformly distributed in [—r, r], the ZZB states [22]: 

e2 > J- f   5-dS f      Pe(0,8 + 6)- d0, (3.22) 
2T JO J-T 

where Pe(9, 9 + 5) is the minimum achievable probability of error in determining the 

true parameter value between 6 and 9 + 5 associated with the likelihood ratio test [72]. 

Observing that f*    Pe{9,9+5)d9 is a non-increasing function of 5, Bellini-Tartara 

proposed an improved bound [16]: 

f2r /   rr-S 

e2 - Y I   SV\[     Pe(0,9 + 6)-d9) -d5, (3.23) 

where V(-) is a non-increasing function of 5 obtained by filling the valleys in the 

bracketed function. As shown in Fig. 3-1, if the bracketed function has a significant 

oscillatory structure (e.g., in an ambiguity-prone problem), this bound could be much 

tighter than the original one. 

Bell extended the Bellini-Tartara bound to arbitrarily distributed vector param- 

eter estimation [13, 14, 15].   For any 7Vp-dimensional vector a, the extended ZZB 
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states 

aTEa > /    ö ■ V (    max f   5-v(   max    f mm\p(0),p(0 + A)] • Pe(O,0 + A)d0 ) ■ dö.    (3.24) 
J0 \A-.aT^=sJe ) 

Note that Pe(-) is defined for equally likely binary hypotheses detection. 

Pe(0,0+A) is the most important factor in evaluating the ZZB, which determines 

the validity and tightness of the bound. In the context of parameter estimation and 

for a uniform parameter distribution, we have 

Pe{9,0 + A) = mm(±-Pe(0 + A\e) + ±- Pe{0\0 + A)Y (3.25) 

where Pe(0 + A\0) is the probability that, given the true parameter at 0, the test 

decision is 0 + A, and Pe(0\0 + A) is the error probability given that the true 

parameter is 0 + A. 

There have been considerable efforts for analyzing the detection performances un- 

der different data models [72, 13]. However, except for some simple cases, direct 

calculation of Pe(0,0 + A) is difficult. Some approximations or bounds have been de- 

veloped for this error probability. A typical approximation derived from the Chernoff 

formula [72] is 

Pe(0,0 + A)   «   ^<*™>+4LAW.erfc(smVÄM) 

+ l^(.m)+ü=VaJ!w,m). erfc((1 _ Sm) v^J)j       (3 26) 

where erfc(-) is the complement error function [3]. /i(s) is the semi-invariant moment 

generating function defined by 

ß(s) = In f (p(R/F1))
s(p(R/F0))

1-^R, (3.27) 

where p{R/Hi) is the pdf of the observation under the corresponding hypothesis. sm 

is then chosen by fi(sm) = 0. Note that ß(s, h) in (3.21), which includes the effect of 

random parameter distribution, can be considered as a generalization of (3.27). 
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The function fi(s) plays an important role in performance analysis of the detection 

problem [72]. Many results for the error terms are expressed in terms of ß(s). (3.26) 

is a typical example developed from the central limit theorem, which is valid when the 

observation components, R/, / = 1,..., L, are independent random variables with finite 

means and variances. It can also be derived using the Edgeworth series representation 

of the underlying probability density function [73, 24]. 

The ZZB has been widely applied to time-delay and bearing estimation [80, 77,14]. 

These applications have demonstrated that the ZZB can well specify the performance 

limits in all SNR regions. The expense paid is the complexity in analysis and com- 

putation. Although in a few special cases a closed-form analytical expression of the 

bound is available [80, 14], this is generally impossible, for example, in the matched- 

field problem. 

It is worth noting that a Bayesian bound bounds the global mean square error 

of an estimator. Therefore, if the errors associated with some parameter points are 

obviously larger than those at other parameter points, they will strongly influence 

the averaged error. 

3.2    Applications to Matched-Field Parameter Es- 

timation 

The Bayesian-type bound has not been applied to the matched-field problem yet. In 

this section, we derived the BCRB, WWB and ZZB using the defined MFP/MFT 

data model. 

3.2.1    Data Model 

As before, we denote the unknown parameter set by a vector 0. Typically, this 

parameter set may include source position (range, depth and bearing) and/or envi- 

ronmental parameters (e.g., bathymetry, sound propagation speed, attenuation, and 

density). The dimensionality of this parameter space can be very high, particularly 
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for a range-dependent environment, but the influence of each parameter on sound 

propagation can differ dramatically. So one often resorts to a simplified but repre- 

sentative model when some prior site information is available. 

For the usual matched-field localization and tomography problem, the source is 

a stationary random process. When the observation time is long enough (so that 

the window effect in spectral estimation can be ignored), individual DFT bins of the 

received signal are uncorrelated with each other [81]. Therefore this random source 

is incoherent across its frequency band. We further assume a number of snapshots 

are available for each frequency, where the number of snapshots is determined by the 

observation time and the correlation time of the source process [50]. 

Suppose we have L independent measurements for each of M frequencies, /m, 

m = 1, 2, ..., M. The complex envelope of the received signal using the notation in 

Section 2.3 is expressed as [10]: 

Rj(/ro,Ö) = 6,(/m)G(/ril,ö) + N,(/m),     l = l,...,L, m = l,...,M. (3.28) 

Obviously, R/(/m,0) is an N x 1 vector representing the lib snapshot of the rath 

frequency component and N is the number of sensors of the receiver array. 

Both the signal and noise terms are now assumed to follow a zero-mean Gaussian 

distribution. The covariance matrix for R;(/m,0) is given by 

KR(/m, 0) = a2
b(fm)G(fm, 0)Gt(/m, 9) + a2

n(fm)\, (3.29) 

where of (/m) = TfSb(fm) is the signal variance, a£(/m) = TfSn(fm) is the variance 

of the white noise process, and Tj is the FFT duration. 

Denote 

R Rf(A)   ...   Rf(/M)       R£(/i)   ...   RK/M)      • (3-30) 

Obviously, Risan(iVxMxL)xl column vector. Rj(/m), 1 = 1,..., L, m = 1,..., M, 

are uncorrelated across frequencies and snapshots, so the covariance matrix is a block 
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diagonal matrix, 

KR(0) = 

KR(/I,0) 

KR(/M,#) 

KR(/I,0) 

KR(/M,0) 

(3.31) 

and the conditional probability density function of R is 

p(R\0) 
I*KR(0)| 

exp(-RtKR1(0)R) 

M     L 

n:=1KKR(/m,0)ij J] IIeXP (-^i(fm)^(fm,0)Rl(fm)) • 
m=l i=l 

(3.32) 

3.2.2    Bayesian Cramer-Rao Bound 

The CRB is specified by the inverse of the Fisher information. An expression of the 

local Fisher information, Jr>(0), is available based on the results in [10]: 

M 

[JDMO)  =  LY, 
m=l 

SUfmHfm, 0) (Re[d2(fm, 9)lij(fm, 0) 

i(fm, 9)l)(fm, 0)} + 7(/m, 0)ReMfm, 0)]Re[lj(fm, 0)]) 

(3.33) 
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where d2(/m,0), U(fm,0), kj(fm,0), and 7(/m,0) are defined below (2.17) in Sec- 

tion 2.3.1. 

This local Fisher information depends on specific parameter values. As a result, 

the MLE mean square error at high SNR is often a bit higher than the bound's 

prediction, and the difference is an indication of the local performance variation. 

3.2.3    Weiss-Weinst ein Bound 

Calculation of the WWB relies upon evaluating p(s,ti) in (3.21). For the zero-mean 

Gaussian signal and noise model in Section 3.2.1, we have 

[Je      KR0 + h NKRÖW-'\8KzHe + h\ 

=   In 
J®        llm=l 

(0 + h)|'|KR(ö)|i-|5K^(e + h) + (1 - 8)K^(0)l 
(3.34) 

(Ö + h)^(0)   - (3.35) 
rjL(fm,s,e,h) 

where r)(fm, s, 0, h) is defined by 

r?(/m, s, 0, h) = 

|KR(/m, 0 + h)HKR(/m,Otf-'lsKäHfm, 0 + h) + (1 - s)K^(fm, 0)\.      (3.36) 

The detailed derivations are given in Appendix A. 

In the way to (3.34) (which is the denominator in (3.19)), we need 

sK^(0 + h) + (l-s)K^(0) (3.37) 

to be positive definite. Since both KR(0) and KR(0+h) are positive definite matrices, 

for 0 < s < 1, the positive definiteness of (3.37) is guaranteed. Similarly, in deriving 

the numerator of (3.19), we must have 

2sK^(0 + h) + (1 - 2s)K^(0) (3.38) 
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and 

(2-2S)KR1(ö + h) + (2s-l)Kä1(ö) (3.39) 

to be positive definite. The former one requires s < 1/2 and the latter one requires 

s > 1/2. As a result, the only choice of s capable of securing the bound's calculation 

is 1/2. This constraint could hurt the tightness of the WWB. 

From (3.35), rj(fm, s, 0, h) is actually the basic computational component in (3.18), 

and can be expressed in terms of the source signal variance, the Green's function, and 

the noise variance, based on the eigen-decomposition of the covariance matrix. Define 

A(fm,9) 
a2

b(fm)\\G(fm,9) 

al(fm)\\G(fm,e)\^+al(fmy (3.40) 

B(fm,0,h) 
qg(/m)||G(/m,g,h)||2 

attfm)\\G(fm,0 + h)\\i+al(fmy 
(3.41) 

and 

C(/m,0,h) = gt(/m,0)g(/m,0 + h), (3.42) 

where g(/m,0) is the normalized Green's function. Clearly A and B are determined 

by the signal-to-noise ratios under 0 and 0 + h, respectively, and C defines a signal 

field correlation. We then have (cf. Appendix A) 

ri(fm,0,h) ^=^.(l-^+^(l-|C|')), (3.43) 

where s = 1/2 is removed from the argument list of 77, and /i(l/2, h) is now 

/i(l/2,h) = ln 
'/. 

igP1/2(g + hV/2(ö) 
e     Yl^VL(fm,0,h) 

(3.44) 
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3.2.4    Ziv-Zakai Bound 

As mentioned before, the kernel of the ZZB is the minimum achievable probability of 

error, Pe(0,0 + A). Appendix C gives detailed derivations of this error probability 

using single- and multiple-frequency component models, respectively. The results are 

summarized below. Due to the symmetry between Pe{0\0 + A) and Pe(0 + A\0), we 

only give the results for Pe(0i\0o). Pe(0\0 + A) and Pe(0 + A|0) are then obtained 

by replacing 0O and 0\ accordingly. 

For the case with single frequency component, this error probability is 

WW = I" 77^4^7 E f^"1) • (~XA\ (3-45) 

where 

a-^^Vfc+iy v A 

Al,2(/Oj0o,#l) 

1    M(/o) II G(/o,0o) ||2 (1 - IgUAtet/o^c.)!2) T ^D  ,     (3.46) 

and 

D(f0,00,0!) = 

K2(/o) || G(/O,0o) ||2 (1 - |gt(/o,01)g(/o,e0)|
2) +2a^(/o))2 

-4a*(/0)|g
t(/o,öi)g(/o,0o)|2. (3.47) 

An alternative expression is available (cf. Appendix C), but (3.45) is more computa- 

tionally efficient. 

For the case with multiple frequency components, an exact error probability is 

also available 

M     L 

Pe(0! \00) = J2J2 Cmk+(-^m)k, (3.48) 
m=l fc=l 
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where 

(-Jmk+ — (L - k)\ 

QL- 

QgL-k (s A 2m 
<M (3.49) 

s=l/A2„ 

M 

*i'W=n 
Aim A2n (3.50) 

m=\ 

and {Alm} and {\2m\1 m = 1,  ..., M, are solved using (3.46, 3.47) with each fm 

replacing /0. 

Note that Cmk+ is the partial fraction expansion coefficient for the moment gen- 

erating function, $j'(s). For large M and L, calculation of Cmk+ is rather time- 

consuming. A hierarchy of approximations based on the moment generating function 
> 

is obtained using the Edgeworth series. The first two terms in the series are given by 

Smß(Sm) 
PeW(0i|0o) - exp L(sm) + Sm^Sm) ) erfc (*m>//i(ö) , (3-51) 

and 

pe
[2](Oi\e0) = 

where 

 6 Pe   {0ll0o) +      6v^      (/i(Sm))^eXp(//(Sm))' 

M 

/z(s) = -L ^2 ln K1 _ s^im)(l - sA2m)], 
m=\ 

(3.52) 

(3.53) 

M 

üW=iE 
m=l 

Air 

1 — sAlr 
+ A 2m 

1 - sX2m 

(3.54) 
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and 

M 

^>(a) = 2L£ 
m=l 

Mr, 
1 — sX\r 

+ A 2m 

.1 - sA2m/ 

(3.55) 

The first term is actually the approximation used in (3.26). For the problem here, 

sm is obtained by solving 

M 

£ 
m=l 

X \m 

1 - sXim 
+ X 2m 

sX 2m 
= 0 (3.56) 

and choosing the root between l/min(Alm m = 1,...,M) and l/max(A2m m = 

1,...,M). 

3.3    Summary 

In this chapter, we have first reviewed some of the current results regarding the 

Bayesian performance bounds, and then developed the Bayesian CRB, Weiss-Weinstein 

bound and Ziv-Zakai bound for the matched-field parameter estimation problem. 

We notice that the bound's basic component, either r)(fm,0,h) of the WWB 

or Pe(0,O + A) of the ZZB, is determined by a signal ambiguity function term 

(|gf(/m, 0i)g(/m, M2) and a signal-to-noise ratio term (EtiMJ^Ä). in the next 

chapter, the bounds' behaviors are discussed in terms of the ambiguities at different 

SNR levels. 

53 



Chapter 4 

Ambiguity Analysis 

The signal ambiguity function is an indicator of the invertibility of the signal field. 

When this function is multi-modal, in the presence of noise or other interferences, 

we probably will have some parameter estimates around the sidelobes. Therefore, 

issues on the output mainlobe width and sidelobe levels are very important for the 

development of any matched-field algorithm. 

This chapter addresses various ambiguity issues under a typical shallow water 

environment shown in Fig. 4-1. It is chosen from the SWellEX (Shallow Water Evalu- 

ation Cell Experiments) experiment scenarios [17]. The water column has a downward 

refracting sound velocity profile on the top but is almost isovelocity in the bottom 

half. The bottom depth is assumed to be constant at 198 m. The bottom is modeled 

as a 26-m silty-sand sediment layer overlying an 800-m mudstone layer above a Creta- 

ceous sandstone basement [68]. A linear upward refracting compressional wave-speed 

profile is assumed for the sediment layer as well as the mudstone layer and a constant 

wave-speed for the basement. The density and compressional wave attenuation in 

each layer are assumed to be constant. A 16-sensor array has a 114-m aperture and 

spans the water column from the middle to the bottom. The sensor spacing is of 

half-wavelength at the chosen frequency, /0 = 101 Hz. The field is computed using 

the KRAKEN normal modes model [56]. 
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Figure 4-1: A shallow water environment with depth-dependent sound speed profile. 
Source and receiver configuration is also shown. 

4.1    Fundamentals of Ambiguity in the Matched- 

Field Problem 

Using the normal modes representation, the full-field signal space has a finite dimen- 

sion. The signal field is uniquely determined in the absence of noise if (1) the number 

of sensors is more than the number of (significant) propagation modes; and (2) the 

sensor array has sufficient column spanning. Then for a limited number of param- 

eters, the true parameter position is uniquely resolved as well from the peak of the 

field correlation. This field correlation, however, often demonstrates a multi-modal 

behavior. 

The multi-modal ambiguity structure comes from the nonlinear dependence of 

the signal field on the embedded parameters. Recall from (2.2) that for a range- 

independent channel, the normalized pressure field can be denoted by 

g(rs,zs,zk) « a^2un(zs)un(zk) 
0lknTs 

vk>nrs 
(4.1) 

where a constant density in the water column is assumed, and a is a scale factor so 
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that the norm of the pressure field across the receiver array is unity. To express this 

signal field as a function of source location, (rs,zs), we choose the coordinate origin 

at the receiver array, so the coordinate of the A;th sensor is (0,zk). In addition, we 

use real modal shape functions and assume the number of modes is fixed. 

Effects of the environmental parameters ($) enter the signal field through the 

perturbation of the wavenumber, for example, adding Skn to kn. Hence the ambiguity 

function for two sets of parameters, 9\ = (rs, zs, $1) and 62 = (rs + or, zs + Sz, ty2), 

is given by 

r(/o,0i,02)   
=   laia2| 

un(zs)un(zk)vm(zs + Sz)vm(zk) 

ZEE 
e-iknrs '        ei(km+5km)[rs+5r 

k       n      m 

2 

V^rJ y/(km + 5km)(rs + Sr) 

(4.2) 

The general behavior of this ambiguity function is quite complicated. For the 

case with ^ äJ ^2, we have un(z) RJ vn(z) and 5kn <C kn. Expression in (4.2) can be 

simplified if the receiver array spans the entire water column so that the orthogonality 

of the propagation modes can be exploited, that is 

^-^    1 \   1,        n = m, 
y——un(zk)urn(zk)Ad^< (4.3) 

k   PW (0,       n^m, 

where Ad is the sensor spacing. After some straightforward algebra, 

p2\axa2\2       "^ ^ un(zs)un(zs + Sz) um{zs)um(zs + Sz) 
(Ad)2rs(rs + 6r) Wo,01,62)   «    ,ArfV,    ,     , WL L 

cos ((kn - km)Sr + (Skn - 5km)rs + (Skn - 5km)Sr), (4.4) 

where nmax is again the number of propagation modes. Under this approximation, 

some interference pattern can be expected due to the cos(-) term, but hardly predicted 

in an exact way. 
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We now look at the ambiguity function for source range, depth, and environmental 

parameters, individually. 

4.1.1    Range-dependence 

Given 0X = (rs,zs,$) and 02 = (rs + 5r,zs,ty), and using (4.3), (4.2) becomes 

Ad)2rs(rs + 5r) ^ *-f    kn       km n       m 

We see the ambiguity comes from the term of cos ((kn — km)S'r), which is peri- 

odic with period of 2ir/(kn - km). Interactions between different modes introduce 

some (often complicated) interference pattern, whose maxima correspond to sidelobe 

locations [68]. 

Consider source range estimation under the given environment in Fig. 4-1. In 

this example, the source depth is constant at 60 m, and the source range varies from 

3500 m to 4750 m. Fig. 4-2 presents four ambiguity functions based on different sets 

of modes. We first notice that as the number of modes used increases, the mainlobe 

width decreases indicating a better resolution, while the number of sidelobes increases 

demonstrating a more complicated ambiguity structure. Second, adding more modes 

has little effect on the ambiguity function shown in Fig. 4-2(d). This suggests that 

the first ten modes be enough to represent the signal field in this example, which 

indeed include all the water-borne propagation modes. 

Array with full column spanning 

To study the effects of the array column spanning, we extend the previous sensor 

array using two approaches. The first one maintains the sensor spacing but adds 10 

more sensors, spanning from 6 m to 196 m. The second one still uses 16 sensors 

but increases the sensor spacing, spanning the water column from 1.5 m to 196.5 m. 

Fig. 4-3 displays the ambiguity functions for both cases. 

Compared to Fig. 4-2(d), the peak sidelobe level is about one dB lower.  That 
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Figure 4-2: Signal ambiguity function for source range estimation. The number of 
modes used is (a) 2; (b) 6; (c) 8; (d) 10. The dotted line indicates the true source 
range position. 

4000 4200 
Source Range (m) 

Figure 4-3: Signal ambiguity function for source range estimation using: (a) 26 sen- 
sors; (b) 16 sensors. In both cases, the array aperture spans the full water column! 
The dotted line indicates the true source range position. 
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shows increasing the array column spanning helps to resolve the signal field. Besides, 

although the sparse array gives a little more ambiguous structure, ambiguity functions 

are very similar for both extensions. This is because the propagation signal arrivals 

concentrate on the broadside direction rather than the endfire direction, so the sparse 

array still well samples the field. 

Frequency-dependence 

The interference pattern in (4.5) has been exploited in relation to frequency to find 

estimates of the source range [68]. 

Note from (4.5) that interference maxima occur at 

Sr = l ,     Z = 0,±l,±2,... . (4.6) 
™n       "TO 

In an ideal waveguide, kn — km for low-order modes can be approximated by [68]: 

^ (n2 — m2)c7T2 

"-ra ~ "TO ~ ^ j (4-7) 

where c is the sound speed of the medium, D is the depth of the waveguide, and w is 

the angular frequency. Therefore, for an ideal shallow water waveguide, the sidelobe 

distance is related to frequency by 

2D2 
5r = lT-o ^^w>      Z = 0,±l,±2,... , n,m= 1,2,... . (4.8) 

(n2 — m2)cK 

Similar expressions are also available for some more general waveguides but with 

different powers of 5r. 

One may find the source range by looking at the convergence of (4.8) with fre- 

quency. On the other hand, (4.8) gives an approximation to the frequency-dependence 

of the sidelobe trajectories. Fig. 2 of Ref. [68] shows such an example for the same 

environment in Fig. 4-1. Obviously, this approximation is good if the low-order modes 

dominate the field. 
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4.1.2    Depth-dependence 

For 0i = (rs, zs, \1>) and 02 = (rs, zs 4- 5z, ^), using (4.3), the ambiguity function can 

be simplified by 

p  «102    v^ V^ un(zs)un{zs + bz) um{zs)um{zs + bz) nhM^WM^j: K Ir .    («) 
vm 

Obviously, ambiguities in source depth estimation are attributed to the modal depth 

eigenfunction, un(z). This modal shape function is often highly oscillatory, and the 

mode order n indicates the number of nodes associated with the mode. Although in 

general there is no closed-form expression available for the modal shape function, the 

WKB approximation suggests that it be a function of the modal vertical wavenumber, 

kzn(z), and may be represented as a sum of ex-p(±ikznz) terms [68]. Therefore, we 

would expect the depth ambiguity function contains some cos((kzn — kzm)5z) terms. 

Using the same environment in Fig. 4-1 for source depth estimation, we compute 

four ambiguity functions based on different sets of modes, shown in Fig. 4-4. The 

source range is fixed at 4125 m and the source depth varies from 30 m to 150 m. 

Similar to the range ambiguity function, with more modes used, the depth estimation 

resolution is improved but the sidelobe ambiguity structure is more complicated. 

Again, the ambiguity function of the entire signal field is well specified using the first 

ten modes. In addition, some decreased sidelobe levels are observed in comparison to 

the range estimation case. This could be due to the nulls in modal shape function. 

If, on the other hand, the true source is located at one of those nulls, the decreased 

signal power would lead to some performance degradation. It is worth noting that 

since the interference pattern of T(f0,6z) depends on zs, the ambiguity property is 

expected to vary along the depth. 
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Figure 4-4: Signal ambiguity function for source depth estimation. The number of 
modes used is (a) 2; (b) 5; (c) 7; (d) 10. The dotted line indicates the true source 
depth position. 

4.1.3    Environmental-dependence 

In this case, we have 0i = (rs, zs, ^i) and 02 = {rs, zs, \&2), so the ambiguity function 

is 

r(/o,#2-#i)   =   \aia2f ZEE 
k      n      m 

Un{zs)un{zk)vm(zs)vm(zk) 
pl\Krn    Kn jl's'T^OKm'^s 

y/knrs\/{km + 5km)rs 

(4.10) 

As mentioned before, the environmental parameter set determines modal eigen- 

values (wavenumbers) as well as eigenfunctions. Accordingly, environmental varia- 

tions introduce wavenumber variations, resulting in some exp(iökmrs) terms in (4.10). 

Clearly, the ambiguity in environmental parameter estimation is due to those modal 

wavenumber variations, which are amplified by source range, particularly at long- 

range. 1 

'Even though the scanning interval of * is chosen such that un(z) « vn(z) and 5kn <C kn, (4.3) is 
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Figure 4-5: Signal ambiguity function for sediment wave-speed estimation. The num- 
ber of modes used is (a) 2; (b) 14 for top wave-speed estimation; (c) 2; (d) 21 for 
bottom wave-speed estimation. The dotted line indicates the true wave-speed posi- 
tion. 

An example for sediment wave-speed estimation is shown in Fig. 4-5. To de- 

scribe the sediment-dependent field ambiguity, some higher-order modes have to be 

included (14 modes for sediment top wave-speed; 21 modes for bottom wave-speed). 

Because the wavenumber variations are quite small, the ambiguity structure is much 

smoother compared to the range or depth estimation case. This smooth mainlobe 

structure may support the linear perturbation approach for environmental parame- 

ter inversion [57], although the resolution can be quite limited. Similar ambiguity 

behaviors are observed for sediment attenuation and density. 

In contrast, some geometry parameters may demonstrate significant ambiguities. 

For example, the sediment thickness often introduces time-delays to those modes 

propagating in the sediment and refracted (or reflected) back to the water column. 

As discussed in Section 2.1.2, the time-delay effect can be represented by wavenumber 

variation. Thus, if those (sediment-borne) modes are not important in the signal field, 

we can expect some sidelobe peaks, due to those high-order modes, overlying a wide 

no longer useful for bottom parameters. This is because the bottom information is mainly contained 
in the high-order (leaky) modes, which do not satisfy (4.3) at the receiver array. 
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Figure 4-6: Signal ambiguity function for sediment thickness estimation. The number 
of modes used is (a) 9; (b) 13; (c) 16; (d) 21. The dotted line indicates the true 
thickness position. 

mainlobe due to the low-order modes. Otherwise, some complicated sidelobe structure 

is expected. Fig. 4-6 gives such an example for the thickness of the sediment layer 

under the environment in Fig. 4-1. 

In this example, because the wave-speed at the top of the mudstone layer is much 

higher than that at the bottom of the sediment layer, the mudstone layer acts as a 

rigid basement. When the thickness of the sediment layer varies from 12 m to 62 

m, those sediment-borne modes play a significant role in the wave field. As shown 

in Fig. 4-6, when only the first nine modes are used, a wide mainlobe is observed. 

As more and more modes are incorporated, the field shows highly-oscillatory sidelobe 

behaviors, although we can still see an envelope of the mainlobe. A total of twenty-one 

modes is required to represent the field ambiguity. 

4.2    Ambiguity Mainlobe: Parameter Coupling 

Investigation for individual parameters tells us that the field ambiguity arises from in- 

terferences between modes associated with different parameters, which produce some 

(quasi-)periodic function terms of range/depth/wavenumber variations. Generaliza- 
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tion of the above analysis to multi-dimensional parameter space is much more compli- 

cated. This is mainly due to complicated parameter-dependences of the field, which 

sometimes demonstrate strong inhomogeneity and mutual coupling. To visualize a 

multi-dimensional ambiguity function, one often resorts to its two-dimensional slices. 

In this section, we briefly discuss some two-dimensional cases, particularly how the 

parameter coupling shapes the ambiguity function. 

As discussed in Section 3.1, the parameter coupling describes how the uncer- 

tainty in estimation of one parameter correlates with the uncertainty in estimation 

of another parameter. This description is valid only at high SNR levels and thus is 

closely related to local field sensitivities to parameters. In other words, the parame- 

ter coupling describes how a change of the signal field associated with one particular 

parameter perturbation is related to that associated with another parameter pertur- 

bation. Obviously, the shape of the ambiguity mainlobe gives a perfect indication 

of the parameter coupling. Elongation of the mainlobe along the horizontal or ver- 

tical direction corresponds to weak parameter coupling, while elongation along the 

diagonal direction corresponds to strong parameter coupling. 

Let us first look at the source range-depth estimation problem. Since the envi- 

ronment is perfectly known, the wavenumber variation in (4.4) is eliminated, and 

T(fo,6z,6r) 
p2\aia2\

2 

(Ad)2rs(rs + 6r) 
n^n^ un(zs)un(zs + Sz)um{zs)um(zs + 5z) 
2^ 2_> 1 1 cos ((*» _ k™)5r} ■ 

n       m Kn Km, 

(4.11) 

We see that 5r and Sz enter the ambiguity function separately, and cos ((kn — km)5r) 

and un(zs + Sz) are two different (quasi-)periodic functions. Accordingly, we would 

expect a weak coupling between source range and depth. This is observed from 

Figs. 1-1 and 4-7. Similar to many other examples of matched-field processing [9, 17], 

there is little mainlobe elongation along a diagonal direction. 

In fact, a strong parameter coupling can often exist between two environmental 
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Figure 4-7: Ambiguity mainlobe contour for source range and depth estimation. The 
cross sign indicates the true source position. 

parameters, when they act in a consistent way such that the wavenumber variations of 

modes (usually a subset of modes) are maintained. For example, the sediment top and 

bottom wave-speeds are strongly coupled under the previously-defined environment, 

as shown in Fig. 4-8 (b). For this environment (cf. Fig. 4-1), the wave field is actually 

determined by reflections at the water-sediment interface as well as reflections at the 

interface between the sediment layer and the mudstone layer. A positive perturbation 

of the sediment top wave-speed increases the effective critical angle (measured from 

the horizontal line), and thus decreases the modal penetration into the sediment layer. 

However, this effect is canceled by a negative perturbation of the bottom wave-speed, 

which intends to increase the effective critical angle between the sediment layer and 

the mudstone layer and thus decrease the modal penetration into the mudstone layer. 

As a balance, the sediment-borne modes are about maintained. Accordingly, when 

only the water-borne modes are used, there is just a little coupling between these two 

wave-speeds (cf. Fig. 4-8(a); the slope of the mainlobe elongation is about -0.25); 

when the sediment-borne modes are incorporated, we can see a strong (negative) 

coupling between them (the slope is about -0.95). 

Note that, for the environment given in Fig. 4-1, because the reflections at both 
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Figure 4-8: Signal ambiguity function for sediment top and bottom wave-speed esti- 
mation. The number of modes used is: (a) 8; (b) 22. The cross sign indicates the 
true parameter position. 

interfaces dominate the wave field, the refraction and then the wave-speed gradient 

in the sediment layer are less influential. Consequently, the coupling of the sediment 

thickness with either the top wave-speed or the bottom wave-speed is small. The 

situation is different when we replace the mudstone layer by a basement with wave- 

speed equal to the bottom one of the sediment layer, as discussed in Ref. [63]. In this 

case, there is no reflection at the sediment-basement interface. Instead, part of the 

sound penetration in the sediment layer is refracted back to the water column, which 

is determined by the wave-speed gradient. The wave-speed gradient is maintained by 

simultaneously increasing the sediment thickness and bottom wave-speed. Thus, a 

strong coupling between these two parameters is observed. 

Coupling of the environmental parameters with the source location is through 

the variations of the wavenumbers. Because the wavenumber variation, 5kn, and the 

source position variation, 5r or Sz, enter the ambiguity function in a very complicated 

way, coupling analysis is often analytically intractable. It is true that there could be 

no coupling if the wave field has little dependence on the chosen parameters, for 

example, some deeper bottom properties. Nonetheless, large wavenumber variations 
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Figure 4-9: Signal ambiguity function for source range and sediment thickness esti- 
mation: (a) ambiguity function; (b) mainlobe contours. The cross sign indicates the 
true parameter position. 

do not necessarily lead to a strong coupling between any source parameter and the 

environmental parameter introducing those large wavenumber variations. 

For example, we know that the wave field is very sensitive to the sediment thick- 

ness, as shown in Fig. 4-6. However, from Fig. 4-9, the mainlobe elongation is close to 

vertical2 (the slope is about 25), indicating a weak coupling between the source range 

and the sediment thickness. This is because the phase variation introduced by the 

thickness is much faster than that by the range due to larger vertical wavenumbers 

of the sediment-borne modes. 

It is interesting to note that, given the environment in Fig. 4-1, the source range 

estimation is strongly coupled to both the sediment top and bottom wave-speeds, as 

shown in Fig. 4-10 (both slopes are about -1 second). This is again determined by the 

modal wavenumber variations of those sediment-borne modes, which is comparable 

to the source range variation. Hence, to obtain a good estimate of the source range, 

knowledge about the sediment wave-speed is important. 

To avoid misleading the reader, we have to point out that one should be very 

2To make this observation clear, one must use some (standard) comparable units for parameters 
and scale the ambiguity plot properly. 
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Figure 4-10: Signal ambiguity function for source range and sediment wave-speed 
estimation: (a) top wave-speed; (b) bottom wave-speed. The cross sign indicates the 
true parameter position. 

careful before drawing a general conclusion for the coupling between two parameters. 

This is because the parameter coupling often depends on a specific environment as well 

as specific parameter values, and the ocean environment often shows strong coupling 

variability within the parameter space. 

Generalization of the coupling description to sidelobe ambiguity shape should be 

possible, but will be more difficult for physical interpretation. 

4.3    Performance Bound and Ambiguity 

In previous sections, we have seen that the signal field correlation can be described 

in terms of the mainlobe and sidelobe behaviors. For the purpose of performance 

analysis, it is desired to connect the multi-modal correlation structure with the per- 

formance in parameter estimation. This can be done by analyzing the performance 

bound in terms of the signal field correlation, as given in this section. Indeed, whether 

and how well a performance bound captures the sidelobe behaviors determine its ca- 

pability to predict the threshold SNR as well as performance in the threshold region. 

An alternative approach is also developed in the context of the maximum likelihood 
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estimate, which is elaborated in the next section. 

4.3.1    Bayesian Cramer-Rao Bound 

Parameter estimation resolution is well predicted by the CRB given that the global 

peak of the ambiguity function has been correctly located. This is often the case at 

high SNR levels, and the local information matrix in (2.17) can be further simplified. 

Note that for a white noise process, we have Sn(/) = Sn(f)\. Under this assump- 

tion, we can define a signal-to-noise ratio term by 

SNRU) = w)ii™. (4,2) 

If we ignore the parameter-dependence of the norm of the Green's function, then by 

factoring the Sn(f) term, the local information matrix at high SNR becomes 

M 

[MO)h = E SNR(fm) \h(fm, 0) ~ Ufm, 0)Pj{fm, 0)1 , (4.13) 
m=\ 

where 

Ufm,0)     =     gHfrn,0)(~-g(fm,0)), (4.14) 

h(fm,0)     =      (^(/«.^(^gtfm,*)). (4-15) 

Now it is obvious that the local information matrix is determined (through (4.14) 

and (4.15)) from the shape of the ambiguity mainlobe, i.e., the slope and curvature 

at the peak point. This connects the ambiguity mainlobe with the Cramer-Rao 

resolution matrix and thus the parameter coupling. A typical way to illustrate the 

coupling is computing the eigenvectors of the resolution matrix and then mapping 

them to the parameter space. The angles of the eigenvectors with respect to the 

parameter axes represent the coupling [63]. One can also use a correlation coefficient, 

which is the error covariance (associated with two chosen parameters) normalized to 

the individual resolutions [27].  Clearly, this coupling measure falls between -1 and 
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+1. 

One must be careful when interpreting a parameter coupling predicted by the 

Bayesian CRB. It is the averaged parameter coupling over the parameter space, and 

the local coupling could be highly inhomogeneous in both amplitude and direction 

within this space. 

4.3.2    Weiss-Weinstein Bound 

The WWB can be used to predict the threshold SNR as well as the performance in 

the threshold region. To study the bound's behavior, we consider a simplified case 

with a single test point h, a single parameter 9, and a single snapshot centered at /0. 

For a uniform distribution of 9 over [-r, r] and r > h > 0, the mean square error is 

bounded by 

e2 > max      4rU~T #^ , (4.16) 
~   *   2r-h- r     dd-rrrwi J-r j}{fo,e,2h) 

where r](f0,9,h) is defined according to (3.43). 

It can be shown (cf. Appendix A) that rj(fo, 9,h) > 1 and equality holds if 

and only if \C(fo,9,h)\2 = 1 and A(fQ,0) — B(f0,9,h), which indicates 9 + h is a 

completely ambiguous point of 9. From (4.16), a small r/(fo,9,h) (« 1) is desired 

for maximizing the bound. Accordingly, the optimum choice of h is related to the 

ambiguity points. 

Recall that A(f0,9) and B(f0,9,h) are SNR-related terms and \C(f0,9, h)\2 is 

actually the field correlation. In a limited parameter interval, we often have local 

homogeneity of || G ||, i.e., || G(/o,0 + h) \\ « || G(/o,0) ||, and thus A{f0,6) « 

B(fo,9,h). Hence, the ambiguity behavior acts on the bound's evaluation via the 

variation of C(/o, 9, h). In this case, 

V(fo,9,h) « 1 + \ ■ l 
A*{l[^e) ■ (1 - \C(fo,9,h)\2). (4.17) 

We see that with 9 as the true parameter and 9 + h as the scanning parameter, the 
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term of ,^Q „ in (4.16) has a similar "estimate-subtract" structure as the MVDR 

ambiguity output [9] (see also Appendix A.3.3). When \C\2 equals unity, which is 

the case when scanning at the true parameter, I/77 equals one. This corresponds to 

the lobe of the maximum at the true parameter. When \C\2 equals zero, which is the 

case of no sidelobes, 

1 2   4{SNR(fo) +1) ,      x 

V(fo,0,h)       n   (SNR(f0) + 2f 

Except at high SNR, 1/77 is usually larger than o2
n, the corresponding MVDR output 

when no sidelobes. This is reasonable since the MVDR minimizes the mean square 

response to noise field. When \C\2 equals some value between zero and one, which oc- 

curs at a sidelobe or off the center of the mainlobe, this "estimate-subtract" structure 

leads to the sidelobe suppression. Specifically, to have 

^¥^ = ,     A,(t„       > *, (4-19) 

where 5 is a pre-defined output level, we must have 

\C(f  9h)\2>l     1~5   W-MfoJ)) M9m \C(fo,9,h)\   >1- — Ai{M     ■ (4.20) 

In the high SNR region, A sa \, and thus \C\2 must be very close to unity. A little 

departure of \C\2 from unity results in a significant decrease of I/77. In the low to 

intermediate SNR region, \C\2 could be small and (4.19) still holds; therefore, the 

ambiguities often prevail in this SNR region. 

Now it is obvious that sensitivity of r](f0,9, h) to variation of \C(fQ, 6, h)\ decreases 

as the value of A(f0,9)(B(fQ,6,h)) and thus the SNR decrease. As a result, at high 

SNR, only a small h achieves a small rj(f0,9,h), while at intermediate SNR, some 

/i's corresponding to sidelobe points achieve small rf(fQ, 9, h). At low SNR, since the 

noise dominates the observation and the associated covariance matrix, it can be easily 

shown rj(fo,9,h) « 1 for all 9 and h within the parameter space. In this region, the 

right-hand-side of (4.16) is maximized by h = \T and the maximum is J^r2, close to 
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|T
2
, variance of the uniform parameter distribution. 

So the optimum choice of the test point indicates the major ambiguous parameter 

position, and they both vary as a function of the SNR. Accordingly, the threshold SNR 

can be defined as the SNR at which the optimum test point switches from a mainlobe 

point to a sidelobe point. For two sidelobes of the same level, the sidelobe with larger 

h contributes more to the error bound since the numerator in (4.16) is amplified by 

h2 while the denominator is linear with h. This can be understood because the error 

probability is solely determined by the signal field correlation (ambiguity) level and 

the SNR. In Sections 4.4 and 4.5, we have further discussions on the error probability 

as well as the threshold SNR. 

4.3.3    Ziv-Zakai Bound 

The ambiguity behavior is captured by the ZZB directly through the term of the min- 

imum probability of error. As introduced in Appendix C, the minimum probability 

of error is defined based on a two-point estimation problem. In other words, it relates 

to the probability that given one parameter point is the true one, the estimate is the 

other parameter point. 

In evaluation of the ZZB (cf. (3.24)), for a given true parameter point 0, the 

minimum error probability needs to be solved for each parameter perturbation A. 

From (3.45), (3.48),(3.51) and (3.52), we see that this error probability is determined 

by a signal ambiguity function term and a signal-to-noise ratio term. Let us restate 

the definition for the ambiguity function: 

C(/,0,A) = gt(/,0 + A)g(/,0). (4.21) 

Then for the single-frequency case, we can rewrite the error probability by 

Pe(e + A\9) = ^l{+
k

xJ2Ll      . (4-22) 
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where 

_       1 + y 1 + SNRjfo)^ + SNR(fo)) " l-\C(f,e,A)\2 

~    + V SJVfl(/0) V1 + SNR(fo)) ' 1-|C(/,0,A)I2 

It can be easily verified that AÄ > 1 and for \R > 0, 

d 

(4.23) 

d\R 
Pe(0 + A|0)<O. (4.24) 

Hence, the error probability decreases as XR increases, either by increasing the SNR 

or decreasing the field correlation. Accordingly, for a fixed SNR level, the error 

probability is high when the field correlation associated with two chosen parameter 

points is high. For a fixed pair of parameter points (and thus fixed field correlation), 

the error probability increases as the SNR decreases. We also notice that there is 

an SNR-square dependence but a |C|2-linear dependence of XR. Therefore, for two 

fixed field correlation levels, the difference between the associated error probabilities 

decreases as the SNR decreases. 

Back to the bound's behavior, compared to sidelobe points, the field at a mainlobe 

point is usually more correlated with the field at the true parameter point, and thus 

the resulting error probability is higher. However, the differences decrease as the 

SNR decreases. On the other hand, in the bound's evaluation, the error probability 

is amplified by the parameter perturbation, which is often much larger for sidelobe 

points. As a result, at some SNR level, the sidelobe contribution is beyond the 

mainlobe contribution, demonstrating the threshold behavior. At very low SNR, 

Pe(0 + A|0) » 1/2 for all 0 and A, then the ZZB is determined by the a priori 

parameter information. For a uniform parameter distribution over [—r,r], the bound 

goes to r2/3. 

Now we see some connections between the ZZB and the WWB. First, the error 

probability of the ZZB, Pe{0,9 + A), plays a similar role as the WWB ambiguity 

73 



output, l/rj(fm,9,h.). Second, the parameter perturbation of the ZZB, A, acts sim- 

ilarly as the test point of the WWB, h, so that the ambiguity-related term (Pe or 

I/77) is amplified by the distance between the scanning parameter point and the true 

parameter point. 

In spite of that, we would expect a tighter performance prediction around the 

threshold region given by the ZZB if the error probability is accurately solved. In 

evaluation of the ZZB, the parameter perturbations are chosen to cover all the main- 

lobe and sidelobe points, so the sidelobe contribution to the mean square error is 

included even though it is still below the mainlobe contribution. In contrast, the 

single-test point WWB captures the sidelobe contribution only when it is beyond the 

mainlobe contribution. Even though multiple test points are used, the number of test 

points is often limited due to some numerical concerns (e.g., inversion of the Q matrix 

in (3.18)). 

Finally, we notice that for vector parameter estimation, evaluation of the ZZB 

requires a maximization of the minimum error probability with respect to the vector 

parameter perturbation A under the constraint that the projection of A onto the 

dimension of the chosen parameter is a constant (cf. (3.24)), 5. This corresponds 

to locating the maximum field correlation level for a fixed distance, 5, to the true 

parameter point along the dimension of the chosen parameter. Clearly, this field 

correlation peak does not necessarily occur with other parameter values equal to 

those at the true parameter point. 

For example, as shown in Fig. 1-1, for a fixed distance to the true source position 

along the dimension of source range (corresponding to an arbitrary range ambiguity 

point), the maximum field correlation often occurs at a source depth different from 

that at the true source position. The resulting ambiguity plot along the dimension of 

source range is actually a projection of the two-dimensional ambiguity surface onto 

the range dimension by choosing the maximum ambiguity output for each r, as shown 

in Fig. 4-11. We see that the mainlobe shape is about the same, while the sidelobe 

levels are significantly increased. Some of the sidelobe positions are also shifted. 

Fig. 4-12 gives another example for source range estimation with uncertainty of 
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Figure 4-11: Signal ambiguity function for source range estimation without depth 
uncertainty (solid line) and with depth uncertainty (dashdot line). The dotted line 
indicates the true source range. 

the sediment bottom wave-speed. The dotted line is a projection of Fig. 4-10(b) 

by choosing the maximum ambiguity output for each r. Now we see that both the 

mainlobe and sidelobe levels are increased. This can be explained by noting that the 

sediment bottom wave-speed is strongly coupled to the source range, while the source 

depth is not. 

Therefore, in a multiple-parameter estimation problem, uncertainties of the other 

parameters could remarkably change the ambiguity structure in estimation of the 

chosen parameter, normally by increasing the mainlobe/sidelobe levels and/or shifting 

the sidelobe positions, depending on the parameter coupling. 

4.4    Maximum Likelihood Error Analysis Based on 

Two-Point Parameter Estimation 

We have seen that a large-error performance bound is closely related to the ambi- 

guities, and the threshold phenomenon occurs when the sidelobe contribution to the 

total error is beyond the mainlobe contribution.  To understand some fundamental 

75 



4000 4200 
Source Range (m) 

Figure 4-12: Signal ambiguity function for source range estimation without sediment 
bottom wave-speed uncertainty (solid line) and with sediment bottom wave-speed 
uncertainty (dashdot line). The dotted line indicates the true source range. 

ambiguity behaviors and check the validity of the bounds, we would have estimation 

error at each scanning parameter point for a given true parameter point; errors at 

different mainlobe/sidelobe points can then be compared. In this section, we de- 

velop such an approach for error analysis in the context of the maximum likelihood 

estimate. 

For the given matched-field data model, the MLE for source/environmental pa- 

rameter estimation is given by (cf. Appendix B) 

M      h 

0(R) = arg max J^ Yl |RI(/m)g(/m, 0) 
m=l 1=1 

(4.25) 

Consider a discrete set of parameter values, {0i}- To analyze the performance of 

the maximum likelihood estimate, one may want to find the probability that the peak 

of the MLE output could occur at any particular candidate parameter point, that is, 

given 0 is the true parameter point, 

M     L 

Pr(argmax J^ J^ R? (/m)g(/m, 0,)    = &%), 
m=l 1=1 

(4.26) 
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where 0S denotes the scanning parameter point. Then the mean square error can be 

directly computed by 

E = ££ (*i - °) {*i - 0i)Tp& I OMOi). (4.27) 
i       3 

This is for the random parameter model. If 0 is treated as a deterministic parameter, 

then the sum over 0 is removed. Unfortunately, it is very difficult, if not impossible, 

to solve the error probability in (4.26). 

An estimation problem with a discrete set of parameter points can be transformed 

to an M-ary detection problem. The error analysis of an M-ary detection problem is 

still hard, and a union bound of performance [81] is often used based on a further 

simplified problem, the two-point estimation problem, as stated below. 

Two-Point Parameter Estimation Problem: Given the data model in (3.28) and 

two possible parameter sets, 0O and 0l5 and given the observations in (3.30), we are 

to find estimates of the parameter set using the MLE in (4.25). 

Under this definition, the error probability in parameter estimation involves the 

probability that given 0O (0a) is the true parameter, the MLE output at 0i (0O) is 

larger than that at 00 (0i), that is 

ML. 2 M     L 

Pe{ei  | *o) = Pr     £ £   Rj(/m)g(/m, Öl)      > £ £   R?(/m)g(/m, *o) 
^m=l 1=1 m=\ 1=1 

(4.28) 

The two-point estimation error probability in (4.28) has been derived in Ap- 

pendix C and summarized in Section 3.2.4. Fig. 4-13 shows examples of Pe(0i | 0Q) 

for source range estimation in Section 4.1.1. As discussed in Section 4.3.3, size of 

the error probability across the parameter interval exactly follows the signal field cor- 

relation level (cf. Fig. 4-2(d)). This is more visible at low SNR levels because the 

relative difference in error probability associated with a high-correlation-level point 

and a low-correlation-level point is decreased. We also notice that the maximum error 

probability is 0.5. This must be the case because, for a perfectly known environment, 
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Figure 4-13: Two-point estimation error probability associated with each scanning 
source range and the true source range: (a) SNR = 0 dB; (b) SNR = -10 dB; (c) SNR 
= -20 dB; (d) SNR = -30 dB. The true source range is at 4125 m. 

the signal field correlation achieves the maximum at the true parameter position. 

4.4.1    Estimation Errors due to Different Ambiguity Points 

Consider a set of scanning parameter points, {0i,02, •••}, and suppose the true pa- 

rameter point is one of them, Oj. Denote Sj as the event that 0 ^ Oj and Ekj as the 

event that the MLE output at Ok is larger than that at Oj for k ^ j. From (4.25), 

we see that e,- is a union, for k ^ j, of £*,-. Therefore, the error probability is given 

by [81, page 104]: 

Prfoft)   =   Pr(U^I^) 
k& 

Z>(ejy|0;) 

-       £       Prfay|>tflöi) 
Mi. i^J. k^i 

+ ...  . (4.29) 
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The first term of the second equality is the so-called union bound, which is an upper 

bound to the desired probability. 

Obviously, each ekj corresponds to a two-point estimation problem. Because these 

two-point estimation events are not mutually exclusive, we cannot get an exact error 

probability for each scanning parameter point. However, given the true parameter 

point at 6j, the exact error probability at any scanning parameter point 0k is propor- 

tional to the two-point estimation error probability associated with Oj and 0k, by the 

first-order approximation of (4.29). This is a good approximation in the intermediate 

to high SNR region, where the second-order terms in (4.29) can often be ignored. 

A quantitative error analysis is then available. We first compute Pe(0k \ Oj) for 

each 0k, k ^ j, at different SNR levels, and then multiply them by the correspond- 

ing distance square, (6k - Oj)2. So we have the estimation error at each scanning 

parameter point, that is 

<?MLEiflk I oj) = Pe(0k | Oj) X (0k - Oj)2. (4.30) 

We define this point estimation error as the probabilistic square error. 

Consider again the example of source range estimation. Suppose that the true 

source range is 4125 m and the scanning interval is 3500 m to 4750 m. This interval 

is discretized by 

6i = 3500 + (* — 1) x 1 m, i = 1,..., 1251. (4.31) 

Obviously, the true parameter is 0626. The probabilistic square errors at different 

scanning parameter points are evaluated, as shown in Fig. 4-14, for which ten inde- 

pendent snapshots are used. 

Fig. 4-14 demonstrates several operation regions with respect to SNR. For SNR 

above 7 dB, the errors around the mainlobe peak dominate. Below SNR = 7 dB, dis- 

tant mainlobe points introduce larger errors, and the errors at some sidelobe points 

become visible. The sidelobe errors are comparable to the mainlobe errors at SNR 

= -2 dB, and even beyond the mainlobe errors as the SNR further decreases. Below 
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Figure 4-14: Probabilistic square error as a function of SNR at each scanning source 
range. The vertical line in the middle (with zero error) corresponds to the true source 
range. 

SNR = -8 dB, the differences in error probability associated with different ambiguity 

points are so small that the probabilistic square errors are gradually dominated by 

the distance between the scanning parameter point and the true parameter point. In 

summary, this plot describes some fundamental behaviors in this parameter estima- 

tion problem. 

To look at some detailed behaviors, we first plot the probabilistic square errors 

at different sidelobe points as shown in Fig. 4-15. As expected, the highest sidelobe 

peak at 3583 m (cf. Fig 4-2(d)) leads to larger errors, about 10 dB higher than those 

at 3867 in and 4479 m. That the result at 4750 m is close to (and even a bit beyond 

at very low SNR) that at 3583 in is due to a larger distance. Even so, the curve for 

the sidelobe peak at 3583 m represents the dominating sidelobe behavior well. This 

behavior is not very sensitive to the accuracy of the sidelobe peak location. As shown 

in Fig. 4-16, errors at the sidelobe peak (3583 m) are very close to those at ± 50 m 

from the peak particularly in the low to intermediate SNR region. This is the region 

of interest regarding the sidelobe issue. 

For the mainlobe behavior, we first notice that the close neighboring point(s) of the 
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Figure 4-15: Probabilistic square errors as a function of SNR at different sidelobe 
peak points: 3583 m (solid line); 3867 m (dashdot line); 4479 m (dashed line); and 
4750 m (dotted line). 
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Figure 4-16: Probabilistic square errors as a function of SNR at different sidelobe 
points around a sidelobe peak: 3583 m (solid line); 3533 m (dotted line); and 3633 m 
(dashed line). 
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Figure 4-17: Probabilistic square errors as a function of SNR at different mainlobe 
points: 4124 m (black line); 4119 m (magenta line); 4110 m (blue line); 4099 m (green 
line); and 4079 in (yellow line). The result for the sidelobe peak at 3583 m is also 
shown (red line). 

true parameter usually plays a key role in the very high SNR region. This is plotted in 

Fig 4-17 together with other mainlobe points. We see an obvious counter-interaction 

between the field correlation level and the parameter distance. The probabilistic 

square error at a close mainlobe point is larger at high SNR, but increases slowly as 

the SNR decreases and is soon below the error at a distant mainlobe point, which 

is smaller at high SNR but increases rapidly. For comparison, the result at the 

representative sidelobe point (3583 m) is also included. At SNR sa -3 dB, the sidelobe 

error is over all the mainlobe errors. The intersection point is specified by this sidelobe 

point and the mainlobe point at 4110 m. We denote this mainlobe point as the 

representative distant mainlobe point. Apparently, the representative mainlobe point 

depends on not only the mainlobe shape (correlation level) but also the relative 

magnitude of the mainlobe and sidelobe levels. 

So the representative ambiguity point can be identified at each SNR by locating 

the peak probabilistic square error. Fig. 4-18 summarizes the results in Figs. 4-15 

and 4-17 by plotting the errors at three representative ambiguity points for different 

operation regions. Typically, above SNR.,, the errors of the mainlobe points dominate; 
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Figure 4-18: Probabilistic square errors as a function of SNR at different ambiguity 
points: close mainlobe point (4124 m, dashdot line); distant mainlobe point (4110 m, 
dashed line); and distant sidelobe point (3583 m, solid line). 

below SNR]!, the sidelobe contribution is the major source of the estimation error. As 

discussed in Section 4.3.2 and 4.3.3, the larger-error performance bounds demonstrate 

exactly the same behaviors regarding the error contributions from different ambiguity 

points. 

4.4.2    Local Performance Approximation 

To check the validity of the developed error analysis, the two-point estimation error 

probability is used to obtain some approximations to the mean square error of the 

maximum likelihood estimate for a fixed true parameter. This corresponds to a 

deterministic (but unknown) parameter model, and the performance measure is the 

local mean square error. Note that in the high SNR region, the peak of the true 

parameter protrudes prominently above the noise and can be located accurately. The 

estimation error is due to slight, noise-induced distortion of the true peak and can be 

well predicted by the CRB. In the low SNR region, the true peak could be below the 

noise level and obscured by other ambiguous peaks. The performance is dominated 

by choosing the interval the true peak lies in, and a large error arises when a wrong 
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interval is selected. 

Under this understanding, a natural way to approximate the mean square error 

is [72]: 

e2(9)   =   E  (9-9) 

=   E (9 — 9)2 | interval error   Pr(interval error) 

+ E (9 — 9)2 | no interval error Pr(no interval error).      (4.32) 

In Ref. [72], although the parameter interval was divided into multiple (say, M) sub- 

intervals to form an M-ary detection problem, different sidelobe errors corresponding 

to different sub-intervals were uniformly treated. As we see in Fig. 4-15, the er- 

rors due to different sidelobe points could differ up to 10 dB. To achieve a better 

approximation, we would resort to a true M-ary detection scheme. 

We first divide the parameter interval into multiple sub-intervals so that, except 

the mainlobe sub-interval, each sub-interval contains an apparent sidelobe structure. 

For example, for the source range estimation problem in Fig. 4-2, there is one mainlobe 

sub-interval and four sidelobe sub-intervals as specified in Fig. 4-19. We then denote 

each sub-interval by the sidelobe peak point, 9^ i = 1,..., M— 1, and use the two-point 

estimation error probability, Pe(9i \ 9) as the probability that an estimate falls into 

this sub-interval. We also notice that E (9 — 9)2 | no interval error   is just the local 

CRB. Then the mean square error can be approximated by 

M-\ 

e2{9)   =      1 - J2 pe(8i I 0)    x CRB 

M-l 

+ Y, pe& I 0) x ft - 9f. (4.33) 
i=l 

Fig. 4-20 presents the results for the example in Fig. 4-19. Also plotted are the 

local CRB in (2.8) and the MLE simulation results using (4.25). The approximation 

agrees very well with the MLE simulation in the intermediate to high SNR region. For 

very low SNR, the approximation is bit high because the two-point error probability 
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Figure 4-19: Division of the parameter interval for definition of the M-ary detection 
problem based on signal ambiguity function in source range estimation. The true 
source range is at 4125 m. The dashdot line indicates the separation between two 
adjacent sub-intervals. The dotted line indicates the mainlobe/sidelobe peak position. 

over-states the exact MLE error probability. In contrast, the local CRB is good only 

at high SNR. 

To summarize this section, we establish a connection between the errors in pa- 

rameter estimation and the field ambiguities through the two-point estimation error 

probability. The proposed approach makes it possible to quantitatively analyze the 

ambiguities in the matched-field problem and obtain a close approximation to the 

estimation error. Discussions in this section are for single parameter estimation. For 

vector parameter estimation, the mainlobe/sidelobe properties (for example, size, 

shape and position) are addressed in a multi-dimensional space. However, gener- 

alization of the above analysis to multiple parameter estimation is straightforward, 

although complicated (cf. Sections 6.4 and 6.5 for some examples). The proposed 

approach can also be applied to random parameter estimation by averaging over in- 

dividual parameter points. The next section gives such an example for determining 

the threshold SNR. 
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Figure 4-20: Mean square error as a function of SNR for source range estimation 
given by the local CRB (dotted line), the local approximation in (4.33) (solid line), 
and the MLE simulations (*). The true source range is at 4125 m. 

4.5    Threshold Signal-to-Noise Ratio 

In the last section, we have seen that the ambiguity behavior shows a strong SNR- 

dependence. As a result, the performance often demonstrates several distinct regions 

of operation in terms of the SNR, as shown in Fig. 4-20. To describe such a perfor- 

mance, we need to specify the threshold SNR's between different operation regions. 

This can be done by evaluating a large-error performance bound, because, as dis- 

cussed in Section 4.3, such bounds capture the parameter estimation ambiguities at 

different SNR levels, leading to tighter performance predictions in all SNR regions. 

The canonical behavior of a large-error performance bound is described in Fig. 4- 

21. There are three distinct regions of operation: (1) the asymptotic region at high 

SNR determined by the mainlobe ambiguity; (2) the no-information region at low SNR 

due to the noise domination; and (3) the transition region in the middle attributed 

to the sidelobe ambiguity. 

In the asymptotic region, the mean square error (e2, expressed in dB) is linear 

with respect to the SNR (also expressed in dB). The threshold phenomenon can be 

described as a departure from the linear SNR-dependence. Thus, one may define the 
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Figure 4-21: Typical larger error performance bound: mean square error versus SNR. 

threshold SNR between the asymptotic region and the transition region, SNRx, as 

the point at which the bound is 3 dB higher than the linear prediction. Let us denote 

the linear-dependence of the asymptotic bound as b — a ■ SNR, where b is the error 

prediction at SNR = 0 dB, and a is the slope of this linear-dependence. Obviously, 

both a and b are positive. Then we have for SNRx 

e2(SNR!) = b - a ■ SNRi + 3. (4.34) 

Because of the complicated parameter-dependence of the signal field, we don't 

have a simple closed-form expression for either WWB or ZZB. (4.34) has to be solved 

numerically. One may first evaluate the bound at several (three or more) high SNR 

points, based on which values of o and b are estimated using linear fitting. Then the 

bound is evaluated at gradually decreased SNR levels until (4.34) is satisfied. 

The threshold SNR between the transition region and the no-information region, 

SNR2, can be similarly defined. Note that in the no-information region, the mean 

square error is almost a constant close to the variance of the random parameter 

distribution. So SNR2 can be defined as the point at which the bound is 3 dB lower 

than the a priori parameter variance.   For a uniform parameter distribution over 
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[—r, r], we have 

2 

e2(SNR2) = 10-log10(-)-3, (4.35) 

which is again solved in a numerical way. 

The optimum test points of the WWB can be used to aid the search for SNR,! 

and SNR2. As mentioned in Section 4.3.2, the optimum test point switches from 

a mainlobe point to a sidelobe point around the threshold SNR. Hence, we may 

pre-select a set of representative mainlobe points and sidelobe points and evaluate 

the WWB at these points only. When the bound at any sidelobe point is beyond 

those at all mainlobe points at some SNR level, we may use that SNR point as the 

approximation to SNRj and then a further refinement can be easily followed. When 

the bound at one-third of the parameter interval (cf. Section 4.3.2) is the highest at 

a low SNR level, we may use that SNR as an approximation to SNR2. 

In evaluation of the ZZB, the behavior of the integrand in (3.23) as a function of 

the parameter perturbation is similar to the WWB as a function of the test point. 

So we may evaluate the integrand for a pre-selected set of parameter perturbations 

representing main mainlobe and sidelobe points. Approximations to SNRi and SNR2 

are obtained in a similar way. 

The above approach requires evaluation of the performance bound at all or part 

of test points (perturbations). For SNRl7 an alternative approach is available by 

exploiting the ambiguity analysis based on the two-point estimation error probability. 

This approach only requires some coarse information on the signal field correlation 

and has a simple physical interpretation and simple implementation. 

4.5.1    Estimation of Threshold SNR Based on the Two-Point 

Estimation Error Analysis 

Recall that in Section 4.4, although not explicitly stated, we have already presented an 

approach to find the threshold SNR for a local parameter estimation problem. Given 

the signal field ambiguity function, we first locate the most important sidelobe point 
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as well as the representative mainlobe point. Then we plot the probabilistic square 

errors as a function of the SNR. The sidelobe error is over the mainlobe error at the 

intersection point, and thus, per our understanding on the threshold phenomenon, 

this point actually corresponds to the threshold SNR. Indeed, in the example of source 

range estimation (cf. Fig. 4-18), the intersection between the mainlobe error curve 

and the sidelobe error curve occurs at SNR = -3 dB. This is a quite good indication 

of the threshold SNR observed from the MLE simulations (Fig. 4-20). 

For the random parameter model assumed by Bayesian performance bounds, one 

may want to repeat those steps for each parameter point within the parameter inter- 

val (usually represented by a discrete set). The ambiguity functions within a small 

sub-interval often demonstrate similar structures regarding the mainlobe shape, and 

sidelobe levels and positions. Moreover, as observed in Section 4.4, the probabilistic 

square error is not sensitive to some fine sidelobe structures. As a result, the predicted 

SNR often shows a small variation across the parameter interval. 

Under this consideration, we only need to solve the threshold SNR for a limited 

set of parameter points. The threshold SNR for the entire parameter space can then 

be taken as the average of these individual threshold SNR's. However, when the 

performance is averaged over a parameter interval, it is often strongly influenced by 

large errors at some parameter points. Therefore, a better threshold prediction may 

be taken as the a-percentile point with a > 50. 

Following the same example of source range estimation, we solve the threshold 

SNR for 24 uniformly-spaced parameter points covering the entire parameter interval. 

As given in Table 4.1, the threshold SNR ranges from -2 dB to -4 dB and the difference 

between any two adjacent threshold predictions is up to 1 dB. We see the sidelobe 

ambiguity is quite uniform across the parameter space, only a bit less at long-range. 

This might be because some lower-order modes are more important at long-range. 

The mean of 24 threshold predictions is about -3 dB. If we choose the 83-percentile 

point, the threshold SNR is -2 dB. 

It is interesting to note that using a full column spanning array does decrease 

the threshold SNR. Table 4.2 gives individual threshold predictions for the 26-sensor 
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Table 4.1: Threshold SNR predictions at individual true parameter points in source 
range estimation. 

Source Range (m) SNRj (dB) Source Range (m) SNRj (dB) 

3551 -4 4151 -3 
3601 -3 4201 -3 
3651 -3 4251 -3 
3701 -2 4301 -3 
3751 -3 4351 -3 
3801 -3 4401 -3 
3851 -2 4451 -4 
3901 -2 4501 -4 
3951 -2 4551 -3 
4001 -3 4601 -4 
4051 -4 4651 -4 
4101 -3 4701 -4 

Mean Point -3 83-percentile Point -2 

array (cf. Fig. 4-3(a)). The mean point is about 3 dB lower than the previous one for 

a short array; removing the added 2 dB array gain, the threshold SNR decreases by 

one dB. Similarly, the threshold SNR for the 16-sensor sparse array (corresponding 

to Fig. 4-3(b)) is also one dB lower (Table 4.3). Nonetheless, this improvement might 

be insignificant considering the increased deployment difficulty as well as cost. 

4.6    Summary 

The ambiguity analysis in this chapter mainly includes two aspects. First, we study 

the signal field correlation through the variations of individual source/environmental 

parameters. This helps to explain which factors cause the ambiguity in the matched- 

field problem. Second, the effects of the ambiguity function are investigated first 

in relation to the behaviors of the performance bound, then in the context of the 

two-point MLE estimation error analysis. Particularly, introduction of the two-point 

estimation error probability establishes a direct connection between the errors in 

parameter estimation and the field ambiguities. These developments are well sum- 

marized through the application of locating the threshold SNR. 
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Table 4.2: Threshold SNR predictions at individual true parameter points in source 
range estimation. A 26-sensor column spanning array is used. 

Source Range (m) SNRj (dB) Source Range (m) SNRj (dB) 

3551 -5 4151 -6 
3601 -5 4201 -6 
3651 -5 4251 -6 
3701 -5 4301 -6 
3751 -5 4351 -6 
3801 -6 4401 -6 
3851 -6 4451 -6 
3901 -6 4501 -6 
3951 -6 4551 -6 
4001 -6 4601 -6 
4051 -6 4651 -6 
4101 -6 4701 -6 

Mean Point -6 

Table 4.3: Threshold SNR predictions at individual true parameter points in source 
range estimation. A 16-sensor column spanning array is used. 

Source Range (m) SNRi (dB) Source Range (m) SNRi (dB) 

3551 -3 4151 -4 
3601 -4 4201 -5 
3651 -3 4251 , -4 
3701 -4 4301 -4 
3751 -3 4351 -4 
3801 -3 4401 -4 
3851 -4 4451 -4 
3901 -4 4501 -4 
3951 -4 4551 -4 
4001 -4 4601 -3 
4051 -4 4651 -4 
4101 -4 4701 -4 

Mean Point -4 
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Chapter 5 

Performance Analysis with 

Environmental/System Mismatch 

Matched-field methods are developed to achieve performance improvements over the 

traditional plane wave beamforming methods by exploiting full field solutions to sound 

channel propagation. These full field solutions require an accurate environmental 

model as well as accurate system information, which are often unavailable in many 

practical applications. Instead, an environmental/system model is often assumed and 

some of the parameter values are assigned per one's best knowledge on the test site. 

The prior knowledge may come from on-site measurements, inversions, or derivations 

using empirical geoacoustic models. In the case with mismatch, i.e., the assumed 

environmental/system data differ from the actual physical conditions of an experi- 

ment, the detected pressure field will differ from the computed pressure field even at 

the true values of the parameters being estimated. As a result, the performance in 

parameter estimation is degraded even at high SNR. Sensitivity to mismatch is thus 

the most important liability with matched-field methods [8]. 

According to Ref. [8], environmental mismatch refers to uncertainty in the prop- 

agation model including sound velocity profile and bottom composition; system mis- 

match refers to errors in the receiving system including array shape and Doppier. x 

1 Statistical mismatch has also been discussed in Ref. [8], which refers to the need for covariance 
matrices in the design of adaptive processors, e.g., issues regarding the number of available snapshots. 
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There have been numerous studies in analyzing the mismatch effects [31, 70, 34, 30, 65] 

as well as reducing the sensitivity of matched-field methods to mismatch [46, 67, 28]. 2 

In general, the effects of mismatch include two aspects. First, it causes degradation 

in the output mainlobe peak. Second, it shifts the peak away from the correct posi- 

tion, leading to biased estimates. Most current research [31, 70, 34, 30] investigates, 

through simulations or some quantitative measures, how the peak output of a source 

localization algorithm is deteriorated in the presence of mismatch in individual en- 

vironmental/system parameters. However, few results are reported regarding how a 

performance measure in parameter estimation (e.g., bias or mean square error) can 

be determined given the size of mismatch. 

In this chapter, a modified Ziv-Zakai bound is proposed to incorporate mismatch 

into performance analysis. 

5.1    Modified Ziv-Zakai Bound 

From the view of parameter estimation, the environmental/system mismatch brings 

mismatch to the underlying data probability model. Let us first state the regular pdf 

by 

p(B.{O,Bo);M{0,Boj), (5.1) 

where 

R is any random observation vector which depends on a set of parameters, 0 and B0; 

0 is the parameter vector to be estimated; 

Bo is any other parameter vector, deterministic or random, not included in 0 but 

necessary for specifying the pdf of R; and 

2In the context of source localization, one approach is joint estimation of the source location 
and the environmental/system parameters. This can be done in a Bayesian framework discussed 
in Chapter 3 and the Bayesian bounds can be applied. However, this approach soon becomes 
computationally expensive as the number of unknown parameters increases. 
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M(-) is a set of constant scalars, vectors, or matrices, directly defining the pdf. It is 

a function of the embedded parameters, 0 and B0, and can be constructed from 

the moments, for example, mean and covariance matrix. 

For example, given R is a real Gaussian variable with unknown mean m0 but 

known variance (7%, we have 

p\R(mo,a0);M(m0,aQ)j =    ,—    exp f     2 °    j . (5.2) 

Then 9 = m0, B0 = cr0, and A^(-) = {m0, a0, a%}. 

To describe a mismatched probability model, we introduce a so-called mismatched 

probability density function: 

p(R(0,ßo);A4(0,B„)). (5-3) 

The mismatched pdf has the same form as the regular pdf but now M{-) is a function 

of the assumed background parameter set Ba, while the observation vector is, as 

always, a function of the true background parameter set Bo- Clearly, Ba includes all 

the parameters assumed for the background model except those being estimated, and 

some of parameters in Ba could have the same values as in Bo- 

Following the example in (5.2), we now assume the variance is mismatched, given 

by (7%. The mismatched pdf is then defined by 

p(R(m0,a0);M(m0,oa)) = exp I 2g2 °    J • (5.4) 

Thus, 0 - m0, B0 — a0, Ba = aa, and M{-) - {m0, aa, ol). 

Eq. (5.3) actually summarizes the data probability model often used in developing 

a parameter estimation algorithm, although it is often not explicitly specified that the 

practical observation vector behaves according to a different background parameter 

set. For example, the maximum likelihood estimator can be expressed as 
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0ML{R,Ba) = axgmax\np(R(O,Boy,M(O,Ba)). (5.5) 

Under mismatched background, the binary hypotheses test is again stated by 

HQ :      0 — 0Q, 

Hx:      0 = 0!. (5.6) 

The pdf 's under the hypotheses H0 and Hx are 

P(R(0o,Bo);M(0o,Ba)"j (5.7) 

and 

p(R(0i,Bo);A<(0i,ßa)), (5.8) 

respectively. 

A key point to help understanding is that one does not know the true background 

parameter set and uses an assumed background parameter set. Therefore, either the 

Bayes or Neyman-Pearson criterion [72] again leads us to an optimum test based on 

the likelihood ratio. To minimize the total probability of error, this likelihood ratio 

test is stated by 

Z(R) = In 
p(R(Ö1,ß0);M(öi,ß«)) 

p(R(0o,Bo);M{eo,Baj) 

Hi 

Ho 

(5.9) 

Following the same procedure leading to the regular Ziv-Zakai bound [22, 13], we 

obtain a modified Ziv-Zakai bound, which is 

e2>^r/   6V[f     Pe-mis(e,9 + S)-de)-d5 (5.10) 
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for a scalar parameter uniformly distributed on [—r, r], and 

ar Ea> /    6-v(   max    / min[p(0),p(0 + A)] ■ Pe_mis{0,0 + A)d0 ) • dS 

(5.11) 

for a vector parameter with prior distribution of p(0). Pe_mjS(0,0 4- A) is the mini- 

mum achievable probability of error associated with the mismatched likelihood ratio 

test in (5.9). 

In general, when a closed-form error probability for the regular likelihood ratio test 

is available, the mismatched error probability is solved in a similar way, particularly 

when the likelihood ratio can be expressed in terms of the correlation between the 

observation vector and the computed replica (matched-filter). In that case, replacing 

the matched replica with the mismatched replica does not change the form of the 

statistics of the likelihood ratio. 

Therefore, given the size of mismatch, Ba — B0, the modified Ziv-Zakai bound can 

be used to evaluate the mean square error in parameter estimation. The concept 

of the mismatched pdf works well with the ZZB because the likelihood ratio test 

depends on both the observation and the assumed statistical information about the 

observation. This enables us to separate the observation and the assumed statistics 

in evaluating the error probability. In contrast, in deriving the BCRB or WWB, the 

observation vector is integrated out and the bound can only be expressed in terms of 

the assumed statistics. 

5.2    Application to the Matched-Field Problem 

Given the data model in (3.28), dependence on environmental/system parameters is 

embedded in the term of Green's function. 3 Using the notation in Section 5.1, the 

3The mismatch (including the system mismatch) has no effects to the white noise model, which 
is used by assuming a weak dependence of the noise upon the channel. However, if the colored 
(correlated) noise field is considered, the mismatch should be incorporated in the same way for the 
signal field. 
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probability density function in (3.32) can be rewritten as 

P(R(0,B0);M(0,B0))   = J-0 exp(--R}(0,Bo)KR
l(0,B0)R(0,Bo)) 

UZ=i\^n(fm,9,B0)\
L (5.12) 

M     L 

IIIIexP (-R!(/n.>ö> Bo)Kn(fm, 0, ßo)Rj(/m, 9, B0j) 
m=\ 1=1 

The log likelihood ratio has the form 

M     L M     L 

W = E E   *!(/»» ß0)g(/m, öl, ßb)     - E E   RJ(/-> B0)g(fm, 90, Bo) 
m=l 1=1 m=\ 1=1 

(5.13) 

and the associated error probability 

M     L 

Pe(91\0o)   =   Pr    X!E|Rf(/-^o,ßo)g(/m,öi,Ho) 
\m=l 1=1 
M     L 

^ EElR!(/-'öO'5o)g(/™'0o,^o) 
m=l 1=1 

(5.14) 

is solved in Appendix C. 

Now we assume some mismatch in background parameters, so that Ba is different 

from BQ. The mismatched pdf is available by modifying the parameter-dependence 

in (5.12), which is 

p(R(9,B0);M(0,Ba))   =   ^-1-^exp (-R^(0,Bo)K^(0,Ba)R(9,Bo)) 

\M (5.15) ni=1w/m,Mfl)i
i 

M     L 

PI IJexp (-Rf(/m,Ö,ßo)KR1(/m,0,Ba)Ri(/m,Ö,Ho)) . 
m=l 1=1 
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Under this pdf, the likelihood ratio test is stated by 

M     L M      L 

'(R) = EER!^'W"»^'ß«)      -£X)Rf(/m,Bo)g(/m,0O,B.) 
m=\ 1=1 m=\  1=1 

o Hi 

> 
< 

Ho 

(5.16) 

Therefore, the minimum error probability associated with the mismatched likeli- 

hood ratio test involves 

M     L 

Pe-mis(Ol\0O)     =     Pr [Y.Y,   R! (fm,OQ,Bo)g{fm,0U Ba) 
\m=l (=1 

M     L 

m=\ l=\ 

(5.17) 

Substituting (5.17) into (5.10) or (5.11) properly, we are able to evaluate the modified 

Ziv-Zakai bound under the given background (environmental/system) mismatch, Ba — 

B0. 

5.2.1    Mismatched Error Probability 

The error probability in (5.17) has the same statistical structure as that in (5.14). 

They contain the same random components, R/(/m), and they both compare two 

sums of independent degree-L complex Chi-squared variables, although with different 

weighting. Hence, (5.17) can be solved using the same approaches in Appendix C. 

For example, for the single-frequency case, using Lindsey's approach, we only need 

to redefine yi and x\ in (CIO) and (C.ll) by 

Vi gt(/0,0U Ba)G(fo, 0o, Bo)   gt(/0,0l,Ba) 
bi(fo) 

N(/o) 

and 

xi g^/o, 0o, Ba)G(fQ, 0o, Bo)   gt(/0,0o, Ba) 
Uh) 

N(/o) 

(5.18) 

(5.19) 
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Again, both yi and xi are zero-mean complex Gaussian random variables. The differ- 

ence is the covariance matrix of [yi 5;]T, which is now given by 

^11   =   E[yiy\] 

=   a2
b(f0y || G(/o,0o,ßo) II2 •|gt(/o,Ö1,ßo)g(/O!0o,ßo)|2 + ^(/o),(5.2O) 

1p22     =     E[xix\) 

=   a2
b(f0y II G(fo,00,Bo) ||2 •|gt(/o,öo^a)g(/o,0o,ßo)|2 + ^(/o),(5.21) 

and 

tpu   =   V4i = E[yix\] 

=   *?(/o)- II G{fo,00,Bo) ||2 ■g\fo,euBa)g(fo,0o,Boy(fo,eo,Bo)g(fo,eo,Ba) 

+ °2n(fo) ■ gf(/0, 01, ßa)g(/0, «0, ß«)- (5.22) 

Then the error probability has exactly the same equation in (C.48) but the related 

term definitions are based on the newly defined covariance matrix. 

Similarly, the error probability can also be solved using Richmond's approach. It 

is still evaluated based on the statistics of the complex F-distribution (cf. (C.57) and 

(C.59)), but \i and A2 in (C.57) are now the eigenvalues of the matrix 

(g(/0, 01, 5a)g
t(/0, 01, Ba) - g(/0, 0o, Ba)gf(/0, 0O, Baj) ■ 

(a5
2(/o)G(/0,0o,Bo)G\f0,0O, Bo) + <>l{h)), (5.23) 

which can be solved following the same approach in Appendix C.1.2. Define 

C(0o;Ba,Bo) =gHfo,0o,Ba)g(fo,0o,Bo), (5.24) 

C(90,0i; Bo, Ba) = gt(/0,0O, ßo)g(/o, 0i, Ba), (5.25) 
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and 

C(0u0o;Ba) =g1(fo,e1,Ba)g(f0,90,Ba). (5.26) 

Then the resulting quadratic equation of A is 

A2 + A ■ A - B = 0, (5.27) 

where 

A = a2(/0)- || G(f0,60,Bo) ||2 • {\C(0o;Ba,Bo)\
2 - |C7(Ö0,öi;ßb,ßÄ)|

2),     (5.28) 

and 

B   =   ^(/o)-(1-1^(0!,öo;ß.)|2) +^(/o)of(/o)-|| G(/0>öo,iBo) ||2 • 

(|C(0o,0i;^O^a)|2 + |C(öO;ßa,ßo)|2- 

2-Re{C(0o;Ba,Bo)C(0o,0l;Bo,Ba)C(0l,0o;Ba)}). 

(5.29) 

It is easily shown that B > 0 for 00 ^ 0\. So we have 

Aj = l- ■ (-A - VA2 + AB) < 0, (5.30) 

and 

A2 = 1 • (-A + V.42 + 4ß) > 0. (5.31) 

When multiple frequency components are used, the exact error probability is 

available based on the moment generating function of the log likelihood ratio (see 

Appendix C.2). As given in (C.80), the moment generating function is determined 

from the eigenvalues of the matrix in (C.75). With mismatched environment/system, 

this matrix is (5.23) with /0 replaced by each fm, and thus the eigenvalues at each 
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frequency are solved using the procedure described above. However, the small-error 

approximation in Appendix C.2.2 is no longer useful since now the error probability 

can be close to one. 

5.2.2    Mismatch Analysis 

Calculations of the mismatched error probability involve three correlation terms of 

the received signal field in (5.24), (5.25) and (5.26). The first one, \C(0o;Ba,Bo)\
2, is 

for the assumed and the true background parameter sets, with the parameter being 

estimated at the true position. This measures the peak degradation due to mismatch. 

The second one, \C(0o,0i;Bo,Ba)\
2, is for the true, matched parameter set and the 

scanning, mismatched parameter set. As we later see, this could introduce peak shift. 

The third one, \C(0i,9o;Ba)\2, corresponds to the true and the scanning parameter 

set both under mismatched background. This is similar to the regular ambiguity 

function in (4.21). 

Recall from Section 4.3.3 that for perfectly known background, the error probabil- 

ity is inversely related to XR for AÄ > 0, and XR (> 1) itself is a function of the SNR 

and the field correlation. For a fixed SNR, the maximum error probability is achieved 

at the minimum XR, which corresponds to the maximum field correlation obtained by 

the closest mainlobe point. Under mismatched background, the situation is different. 

When Ba - B0 is small, although |C(0O; Ba,B0)\
2 is smaller than one (the peak 

value without mismatch), it is still the highest correlation value. In this case, the bias 

in parameter estimation can still be ignored but the mean square error would increase. 

As Ba - B0 increases, \C(0o;Ba,Bo)\
2 decreases further such that it is no longer the 

maximum correlation, i.e., at some 0i, we have \C(0Q; Ba, B0)\
2 < \C(00,0i, B0, Ba)\

2. 

In this case, the mismatched error probability is characterized by two operation re- 

gions. 

The first region has \C(0o;Ba,Bo)\
2 > \C{0o,0i;Bo,Ba)\

2, and thus A > 0 and 

XR > 1. This is similar to the mismatch-free case. For the single-frequency case, we 

have 
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1 + y/1 + termi + term2 

— 1 -f \/l + termi + term2' 

where 

(5.32) 

= 4    l-jC^flp;^)!2  f5„x 

lC(öo;gq,go)l2 + lC(go,gi;go^a)l
2-2-termo 

'erm2 '  StfÄ(/o)(|C(0O;ß«,Bb)|2- |C(0O,öi;ßo,ßa)|2)2' { ' 

and 

ierm0 = Re[C(e0;Ba,B0)C{9(he1;B0,Ba)C{e1,e0-Ba)}. (5.35) 

Obviously, the minimum XR is one, which yields the maximum error probability 

of 1/2 (cf. (4.22)). Aß = 1 is obtained when \C(00;Ba,B0)\
2 = |C(0o,0i;#o,#a)|2- 

This corresponds to another parameter point which cannot be resolved from the true 

parameter point by looking at correlation between the mismatched field and the true, 

mismatch-free field. 

The second region is specified by \C(0O;Ba,B0)\2 < \C(Oo,Oi]BQ,Ba)\
2. In this 

region, A < 0 and |Ai| < |A2|. XR is then given by 

-1 + VI + termi + term2 .       . 
AR —  . —, (5.36) 

1 + Vl + termi + term2 

which is now smaller than one. The minimum value of XR is actually zero, which is 

achieved at high SNR by some close mainlobe points whose mismatched fields are more 

correlated with the true, mismatch-free field (\C(00, 0X; B0, Ba)\2 > \C(60;Ba,Bo)\2) 

and also highly correlated with the mismatched field at the true parameter position 

(\C(0i,0Q;Ba)\2 « 1). From (4.22), Pe_mis(0i|0o) is one when XR is zero. Thus the 
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error probability falls between 1/2 and 1. 

Fig. 5-1 presents some related field correlations for the range estimation problem 

in Section 4.1.1. The black line repeats the regular ambiguity function in Fig. 4-2(d). 

Note that in the original problem, the assumed sediment top wave-speed is 1572 

m/s and bottom wave-speed is 1593 m/s. The mismatch is introduced by assuming 

the true sediment top wave-speed at 1550 m/s and bottom wave-speed at 1625 m/s. 

The red line is the correlation between the mismatched replica field at each scanning 

parameter point and the true signal field. A peak degradation (of about 0.4 dB) at 

the true source position (0O = 4125 m) is observed. Besides, at Q\ « 4135 m, we have 

C(00;Ba,Bo) « C(6o,0i;Bo,Ba), and the highest correlation is now at about 4130 

m. 

The mismatched error probability is calculated at SNR = 10 dB. The result is 

shown in Fig. 5-2. Between 9\ = 4135 m and 4125 m, Pe-TOjS(0i|0o) is larger than 

one half and actually very close to one between the highest correlation point and 0O. 

Outside this region, Pe_mjs(0i|0o) goes quickly down to zero, particularly on the left 

side of 0o- 

Although these two operation regions demonstrate two almost opposite behaviors, 

they are subject to the same physical rule. That is, when the signal field at one pa- 

rameter point 0 is closer to the true signal field, the MLE outputs at other parameter 

points can hardly be beyond that at 0, particularly with low-level noise. Between 0i 

= 4135 m and 4125 m, the signal field is alway more correlated with the true field 

compared to that at the true source range, and the error probability increases as 

SNR increases; outside this region, the mismatched field at the true source range is 

always more correlated with the true field compared to those at all other points, and 

the error probability increases as SNR decreases. This explains why the transition 

between two regions is so abrupt at high SNR; at low SNR, the transition is much 

smoother. 

Fig. 5-2 tells us that when Ba — BQ is large, errors around the incorrect correlation 

peak dominate the performance in the high SNR region. This introduces a mismatch- 

dependent bias term in parameter estimation.  We would expect a nearly constant 
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3600 3800 4000 4200 4400 4600 
Source Range (m) 

Figure 5-1: Signal ambiguity function for source range estimation: (4.21), mismatch- 
free (black line); (5.25), mismatched (red line); (5.26), mismatched (green line). The 
right panel shows the details around the true parameter region in which the verti- 
cal dotted line indicates the true source range position; the horizontal dotted line 
indicates the peak degradation. 
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Figure 5-2: Two-point mismatched error probability for source range estimation. The 
right panel shows the details around the true parameter region. The true source range 
is at 4125 m; the sensor-averaged SNR is 10 dB. 
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mean square error predicted by the modified Ziv-Zakai bound at high SNR, the square- 

root of which gives an estimate of the bias. At low SNR, the sidelobe contributions 

through the terms of C(0o,$i;Bo,Ba) and C(Oi,90;Ba) become important. It is 

interesting to note that to reduce the estimation error in the high SNR region, one 

may want to add some noise. 

5.3    Example: Mismatch Analysis in Bearing Esti- 

mation 

Consider the problem that a plane wave signal impinges on a vertical linear array 

of N sensors as shown in Fig. 5-3. The sensors are uniformly spaced at Ad, and <f> 

is the angle (from the horizontal line) of a plane wave arrival. To study the system 

mismatch, which is typical for traditional array problems, we choose the array tilt 

angle fa as the background parameter. Under this configuration, the parameter to be 

estimated is u = sin(0 + fa) (fa is assumed known, although might be mismatched). 

We assume u has a uniform distribution on [—1, 1]: 4 

P(w) = 2'     M < L (5-37) 

We further assume a narrowband source signal centered about a known frequency 

/o- Similar to (3.28), the data model is stated by 

R,(/o, u, fa) = 6,(/o)G(/0j u, fa) + N,(/0),     I = 1,..., L, (5.38) 

where the signal field G(-) is now 

G(f0,u,fa)=\l  e~^Ad  ...  e-^M^f, (5.39) 

4In many applications, one may want to assume a uniform distribution for </>, which results in 
a pdf of l/(7r\/l - u2) for u. Choosing u as the unknown parameter simplifies the performance 
analysis because the local performance is independent of u. 

105 



Actual Array Position 
Plane Wave Signal Arrival 

Assumed Array Position 

Figure 5-3: Uniform linear array. Actual and assumed array positions are also speci- 
fied. 

and c is the wave propagation speed in the medium.   Here we have used the first 

sensor as the reference sensor. The covariance matrix is again given by 

KR(/O, U, <f>T) = afc
2(/o)G(/o, u, 0r)Gt(/o, u, <fr) + a2

n(f0)\. (5.40) 

For this plane wave signal model, it is easily shown that the ambiguity function 

has a nice form: 

r(/o,«oi«i;0r) 

sine 

G(fo,u0,<j)T) 
G(fo,u0,(f)T) || 

[Mo . NM . {u 

G(fo,ui,<h) 
!l G(/o,ui,0x) || 

Mo)] 

sine [*& ■ f • (Ul - u0)] 
(5.41) 

To avoid the grating lobes (poles of (5.41)), one often choose Ad smaller than half- 

wavelength, A/2. So the ambiguity sidelobes occur at 5 = u\ — u0 = ^~- • j^-, where 

k is an integer. Fig. 5-4 displays an example given the true bearing at 30°. 

As we see in (5.41), the ambiguity function is independent of u.  Note that we 

have || G(fo,u,<f>r) ||2= N, so the signal-to-noise ratio defined by 
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Figure 5-4: Signal ambiguity function for bearing estimation. The vertical line cor- 
responds to the true bearing. 

SNR(f0) 
Na2

b(fo) 

*2(/o) 
(5.42) 

is also independent of u. This greatly simplifies the evaluation of a global performance 

bound. 

Ref. [14] has applied the ZZB to a similar bearing estimation problem. The 

approximation in (3.26) is used for the minimum probability of error, which is actually 

a lower bound for the time-delay/bearing estimation problem [77]. The optimum 

choice of s is 1/2, so we have 

Pe(u,u + 6)tte^5MKbV.eTfc(±Jß(Lö)Y 

where p{\\ 5) and /i(|;5) are given by [14]: 

H(^S) = -LIR(I + J(1-C(S)) 

(5.43) 

(5.44) 
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and 

^mm,Y 
respectively, with 

and C(5) = T(f0, u,u + 5). L is the number of snapshots. 

The exact minimum error probability is also available based on the results in 

Appendix C. For example, one can substitute the signal-to-noise ratio in (5.42) and 

the ambiguity function in (5.41) into (4.23) and then (4.22). To verify the tightness 

of the error approximation in (5.43), we evaluate the ZZB for the mismatch-free case, 

i.e., the actual array position is the assumed vertical position (4>T = 0 in Fig. 5-3). 

For this example, we choose Ad = ^A, N = 8, and L = 10. 

Fig. 5-5 shows the evaluation results, in which three operation regions described 

in Fig. 4-21 are observed. The approximation to error probability is very close to the 

exact one such that the resulting bounds are hardly distinguishable. They both follow 

the mean square errors computed from the MLE simulations well, and the predicted 

threshold SNR is about -3 dB. Ambiguity analysis developed in Section 4.4 can also 

be applied, and the results for the true bearing at 30° are shown in Fig. 5-6. The 

threshold SNR at this local parameter point is about -2 dB. 

We then assume there is some mismatch between the assumed and the actual 

array positions through the array tilt angle fa (cf. Fig. 5-3). In this case, Bo = 4>T 

and Ba = 0. The related field correlations are given by 

.fcr/tt (jv-DAd, ,   sine [^ .äM.(u      u   )] 

sine [-f- ■ if ■ («i ~ U
TO)\ 

(5.47) 

.2^ (jv-ozn ,        .   sine [2£fe .HM.fu      u)] 

sine [-f- ■ !f ■ (ui - u0)\ 
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-10 -5 O 
Input Sensor—Averaged SNR (dB) 

Figure 5-5: Bearing estimation mean square error given by the ZZB with exact (solid 
line) or lower-bounded (dashed line) minimum error probability, and the MLE simu- 
lations (*). No mismatch is assumed. 
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Figure 5-6: Probabilistic square errors as a function of SNR at different ambiguity 
points: close mainlobe point (0.49, dashdot line); distant mainlobe point (0.54, dashed 
line); and distant sidelobe point (-1.0, solid line). The true u is at 0.5 (<j> = 30°). 
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Figure 5-7: Mismatched ambiguity function for bearing estimation: (a) (fir — 1°; (b) 
(j)T = 5°. Solid line is for (5.47); dashdot line is for (5.48); the vertical line corresponds 
to the true bearing. 

where u0 = sin0o, Ui = sin^j, and uT0 = sin(^0 + 4>T)- Some examples are given in 

Fig. 5-7 for 4>T = 1° and 5°, respectively, with the true bearing at 30° (u = 0.5). 

The peak degradation, \C(u0,UTo',ßa,ßo)\2, is (5.47) evaluated at u^ = u0. Obvi- 

ously, it is no longer the ambiguity mainlobe peak. Instead, the mismatched mainlobe 

peak occurs at U\ = UTO, i.e., 4>\ = (j>o + (f>r- Substituting these correlation terms to 

(5.32) or (5.36) and then to (4.22) and (5.10), we can evaluate the modified Ziv-Zakai 

bound for bearing estimation with system mismatch. 

Figs. 5-8 and 5-9 give the results for 4>T = 1° and (f>T — 5°, respectively. We see 

that as (j>T increases, the bound is nearly independent of the SNR at high SNR, and 

is actually dominated by the square of the mismatch-introduced bias. This bias can 

be approximately computed using the bound. Note that at high SNR the bearing 

estimation variance in the mismatched case is similar to that without mismatch. Then 

we have 

|Bias| = VMZZB(SNRQ) - ZZB(SNR0), (5.49) 

where SNR0 is in the high SNR region. The sign of the bias can be determined from 
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Figure 5-8: Bearing estimation mean square error given by the modified ZZB (solid 
line), and the MLE simulations (*). The array tilt angle is mismatched by 1°. 

the position of the mismatched mainlobe peak. Using this approach, for (j)T = 1°, 

the predicted bias is about 0.0142; for <f>T = 5°, this is 0.0712. Note that u is a 

dimensionless quantity. 

The above predictions can be verified in this simple problem. Note that at each 

<f>, the bias in estimation of u is given by 

sin(<£ + (j)T) — sin(0) « <f>Tcos((f>) = (f>TVl - u2 (5.50) 

for small <J)T. Ignoring the effects around the endfire region, the averaged bias is given 

by 

Bias w /   (f>Ty/l - u2 p(u)du. (5.51) 

In this example, the estimated bias is 0.0137 for fa = 1°, or 0.0685 for (j>T = 5°. 
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Figure 5-9: Bearing estimation mean square error given by the modified ZZB (solid 
line), and the MLE simulations (*). The array tilt angle is mismatched by 5°. 

5.4    Summary 

In this chapter, a modified Ziv-Zakai bound is proposed to bound the mean square er- 

ror of parameter estimation using incorrect environmental/system parameter set. The 

modified bound can be evaluated using the modified two-point estimation error prob- 

ability derived under mismatched circumstances. This mismatched error probability 

can be applied to analyze the ambiguity in the presence of system/environmental 

mismatch and helps to understand the introduced bias at high SNR levels. 

Application to bearing estimation shows that the modified bound gives quite close 

performance predictions to the mismatched MLE, including the mean square error in 

all SNR regions and the bias at high SNR. This makes the bound a useful tool for 

performance analysis in practical sonar/radar applications. For example, given the 

environmental/system uncertainty, we may evaluate the effects of possible mismatch 

for an assumed environmental/system parameter set. 

We should point out that the mismatch discussed in this section is the deter- 

ministic mismatch. Further developments should be possible to include stochastic 

mismatch. 
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Chapter 6 

Examples 

In this chapter, we present some examples to verify the developed theoretical perfor- 

mance predictions and investigate some typical performance behaviors in matched- 

field parameter estimation. We start with some discussions on the computational 

aspects in bound's evaluation, and then present the evaluation results of the BCRB, 

WWB and ZZB for source localization and estimation of environmental parameters in 

a shallow water waveguide. These results are analyzed using the ambiguity analysis 

developed in Chapter 4, and compared to the MLE simulations; some of them are 

compared to the real data processing. 

The environment chosen is one of the range-independent tracks of the SWellEX-3 

experiments [17, 58] and the geoacoustic model [68] in Fig. 4-1 is used for simulations. 

Unless otherwise stated, we consider a single frequency component at 101 Hz. The 

sensor spacing is 7.5 m, equal to the half-wavelength at this frequency; 16 sensors 

are used spanning the water column from 78 m to 190 m. To be consistent with the 

processing described in Ref. [17], except for the single-snapshot example, ten indepen- 

dent snapshots are available for each estimate. Therefore, as given in Appendix D, 

the output SNR is the input SNR plus 17 dB. 

We mainly concern source localization in the presence of environmental uncer- 

tainty or mismatch. Some other relevant issues, for example, snapshot-deficiency and 

incoherent frequency averaging, are addressed as well. In all examples, the KRAKEN 

normal modes model [56] is used to calculate the replica field for the given environ- 
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mental and source-receiver configuration. 

6.1    Computational Issues 

Section 3.2 suggests that a closed-form expression is not available for any of the 

Bayesian bounds in the matched-field problem. As a result, we have to implement 

the bound's evaluation numerically and thus the numerical accuracy and the compu- 

tational load have to be balanced, which is discussed in this section. 

6.1.1    Bayesian Cramer-Rao Bound 

In evaluation of the BCRB, one needs to take the derivative of the Green's function 

with respect to the parameter studied. This can be done numerically using a finite 

difference for the parameter perturbation, which for the scalar parameter case is 

d G(/o,fl + Afl)-G(/o,fl-Ag) 
deG{f<hd) 2Ä9 • (eu) 

The parameter perturbation A9 is chosen so that the Green's function is about linear 

with respect to the perturbation, and thus the derivative is well approximated by this 

numerical method. The linearity condition can be stated by 

G(/0,g + Afl)-G(/o,g)      , 

which means \T\ fa 1 and IT fa 0. 

Since the derivative of p(0) is involved in (3.12), using a uniform parameter pdf is 

inappropriate, whose first-order derivative has impulses at both ends. A frequently- 

used trick is adding some smoothing function at both ends without changing much 
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the original pdf. For example, 

p(0i) 

2^T) (! + cos ITS)
77

)'       ~Ti ^9i^ ~a^ 

Ti(l+ai)' ~ttiTi < ^ < a*r*> (6-3) 

9   ,},     Al + COS ^7Q'T\7r), OLiTi <9i< n. 

For this choice of p(0i), the pdf itself and its first-order derivative are continuous 

across the end points. Given that the parameters are independent with each other, 

the Fisher information due to the a priori parameter distribution is a diagonal matrix 

and the diagonal component corresponds to the contribution from each individual 

parameter, which is for the pdf in (6.3) 

l3A< = W^fy (6'4) 

Unless otherwise stated, evaluation of the BCRB and WWB assumes this modified 

uniform parameter distribution with a; = 0.95. 

6.1.2    Weiss-Weinst ein Bound 

In evaluating the one-test point WWB, we need to determine a possible set of test 

points, from which the optimum test point is sought at each SNR. As discussed 

in Section 4.3.2, the optimum test point best captures the ambiguity behavior at 

each SNR. Therefore, at high SNR, only the test points close to zero need to be 

considered. Furthermore, due to the sensitivity of the WWB to small test points, 

those test points have to be finely sampled. On the contrary, in the transition region, 

the sidelobe points or distant mainlobe points dominate the bound's evaluation and 

the test point set can be more coarsely sampled due to the effect of the increasing 

noise level, as long as it still cover the entire ambiguity space. 

In the multiple-parameter case, the choice of the test vectors is more complicated. 

A general approach is separating a multi-dimensional test vector into multiple one- 

dimensional test points. However, this could lead to a less tight bound if the error 

coupling between any two parameters is significant. The multi-dimensional ambiguity 
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function implies the error coupling in parameter estimation and thus is used to choose 

the set of test vectors. 

It is worth noting that for a multiple-test point WWB or multiple-parameter 

WWB, maximization over all the test points requires remarkable computational effort 

even though the matched-field problem doesn't show a uniform, strongly-oscillatory 

ambiguity structure and thus may only require a small number of test points. An 

alternative (and more efficient) approach is choosing a reasonably large dense set of 

test points distributed over the a priori region. Once the number of test point is 

large enough, it is not necessary to maximize over their positions. Nonetheless, one 

must be careful in choosing the test point set because the matrix Q in the bound's 

evaluation (cf. (3.18)) could be singular when the number of test points is large. This 

can be mathematically verified based on the property derived in Ref. [29, Appendix 

A]. 

6.1.3    Ziv-Zakai Bound 

To define a sample set of parameter perturbations (and thus a path of integration 

in (3.23)), the approach for choosing the test point set of the WWB can be applied 

as well. The valley-filling operation in Fig. 3-1 is shown to increase the bound sig- 

nificantly for time-delay/bearing estimation. This improvement, however, can often 

be ignored for matched-field parameter estimation because the ambiguity property 

is not uniform across the parameter interval and some strong periodic structures are 

averaged out. 

For the multiple-parameter ZZB, the constraint in (3.24), aTA = 6, doesn't 

uniquely determine A but forces A to have the following form: 

A = ^ + b (6.5) 

with aTb = 0. So the maximization in (3.24) is implemented within the (Np — 

l)-dimensional space. The function to be maximized (error probability associated 

with a perturbation averaged over the parameter space) can be a complicated (e.g., 
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multi-modal) function of the free parameters depending on the ambiguity structure 

in multi-dimensional space. This is a well-posed optimization problem, so a local 

(gradient-based) or global (simulated annealing or genetic algorithm) optimization 

algorithm [23] is desired to improve the computational efficiency. 

6.1.4    Computational Load 

In this section, we give the order of the required computations in evaluation of each 

bound based on some typical implementations. 

Note that a numerical integration over the prior parameter space is required for 

any of three Bayesian bounds (cf. (3.12), (3.44), (3.23), and (3.24)). In general, the 

parameter sampling step is chosen so that at most parameter points the field is linear 

with respect to the parameter perturbation equal to the sampling step. This sampling 

step is also the minimum test point for the WWB or the minimum perturbation for 

the ZZB. To simplify the programming, one would use this sampling step as the 

numerical integration step. However, this approach soon becomes computationally 

intolerable as the dimensionality of the parameter space increases. In fact, although 

the integrand of each integration, as given in (3.33), (3.43), or (3.45), is parameter- 

dependent in the matched-field problem, it is usually weakly parameter-dependent. 

Accordingly, the numerical integration can be implemented on much coarser grids, 

e.g., eight times of the sampling step. 

Consider a problem with a single frequency component and three parameters. 

Recall that L is the number of snapshots and N is the number of sensors. Some other 

related quantities are denoted by 

NP\ : number of discrete points for Parameter 1; 

NP2 : number of discrete points for Parameter 2; 

NP3 : number of discrete points for Parameter 3; 

NIi '■ number of integration points for Parameter 1; 

NI2 : number of integration points for Parameter 2; 
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Table 6.1: Computational load in evaluation of performance bound at one SNR. Also 
given are the results in performance simulations of the MLE and MMSE. 

Algorithm Order of the Required Computations Comments 

BCRB 120 -N ■ Nh ■ NI2 ■ NI3 

WWB \.h-NH2-N -Nh-Nh-Nh No optimization 
ZZB 15 -ND -L-N-Nh-Nh- NI3 Local searching 
MLE 10 -NTi -L-N-NPx- NP2 ■ NP3 

MMSE 40 -NT2 -L-N- NPi ■ NP2 ■ NP3 

NIs : number of integration points for Parameter 3; 

NH : number of test points in evaluation of the WWB; and 

ND : number of perturbation points in evaluation of the ZZB. 

Table 6.1 gives the required computations at one SNR in terms of the number of real 

addition/multiplication operations. We see that the BCRB is most computationally 

efficient; the WWB and the ZZB require similar computational effort for typical 

choices of NH, ND and L, which, however, is far significant compared to the BCRB. 

The results in performance simulations of the MLE and MMSE (Minimum Mean 

Square Error Estimator, also called Conditional Mean Estimator [43]) are also listed. 

We denote NTi as the number of the total Monte Carlo trials in the MLE simulation, 

and NT2 in the MMSE simulation. To obtain robust performance results, NTi should 

be on the order of NPi ■ NP2 • NP3. This makes the simulation computationally 

prohibitive. One has to choose a small NTi, and thus the simulated performance 

is hardly exact. Even so, both simulations are still more computationally expensive 

because we often have NPi >• JVTj. This may explain why the performance bound 

is of more interest. Finally, by choosing NT2 = ATi, the computational load in the 

MMSE simulation is about four times of that in the MLE simulation. 

We should point out that as the number of parameters increases, the required run- 

time memory and data storage soon also become the limiting factors in computation. 

118 



6.2    Source Range Estimation with Perfectly Known 

Environment 

The scenario examined is part of the track A in SWellEX-3 [17], in which the source 

depth is nearly a constant at 60 m, and the source range varies from 3500 m to 4750 

m. We are to determine the average performance of source range estimation over 

this interval. For the purposes of demonstration, we first consider a scalar case, i.e., 

source range estimation with perfectly known environment. In later sections, some 

environmental uncertainties or mismatches are incorporated as well. 

We assume the source range is uniformly distributed over the interval of [3500 

4750] m. The source depth is fixed at 60 m and the environmental parameters are 

those specified in Fig. 4-1. Results of the linearity test suggest a perturbation of 0.5 

m for source range is small enough to maintain the field linearity. This is also used as 

the minimum test point of the WWB and the starting point of the integration path of 

the ZZB. Fig. 6-1 shows the global mean square error specified by the BCRB, WWB 

and ZZB. Among them, the multiple-test point WWB uses a set of pre-selected test 

points around the mainlobe and sidelobes without optimization. For comparison, the 

MLE simulation results are also presented on the basis of 5000 Monte Carlo trials at 

each SNR. 

At high SNR, the WWB (one-test point or multiple-test point) approaches the 

BCRB, but they both are a bit (< 1 dB) lower than the MLE simulations. This is 

because the local performance is not uniform across the assumed parameter interval, 

as shown in Fig. 6-2, although in this case the variation is not significant. In contrast, 

the ZZB exactly follows the MLE asymptotic performance. It degrades at very high 

SNR due to the numerical problem (Using a smaller minimum parameter sampling 

improves the bound). 

Below SNR = -1 dB, MLE error increases significantly demonstrating the threshold 

phenomenon. Obviously, the BCRB is no longer useful in this region, while both the 

WWB and ZZB predict this threshold behavior. Note that in the asymptotic region, 
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Figure 6-1: Performance bound evaluation for source range estimation. Solid line: 
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Figure 6-2: Local Fisher information for source range estimation.  Sensor-averaged 
SNR is 10 dB. 
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the WWB and the ZZB can be expressed via a linear relation to SNR, i.e., 

WWB (dB) = 10.5 - SNR (dB) (6.6) 

and 

ZZB (dB) = 11.2 - SNR (dB). (6.7) 

According to the definition in (4.34), the predicted threshold SNR's are -6 dB (multiple- 

test point WWB) and -3 dB (ZZB), respectively. Above SNR = -10 dB, the ZZB is 

tighter (up to 5 dB higher) than the WWB. At very low SNR, both the WWB and 

ZZB are close to the variance of the a priori parameter distribution, which can be 

achieved by a conditional mean estimator [43]. The threshold SNR from the transi- 

tion region to the no-information region is -13 dB (predicted by the WWB; -14 dB by 

the ZZB). Overall, for most SNR levels of practical interest, the ZZB gives the best 

performance prediction among three Bayesian bounds. * 

Below the threshold SNR, the MLE MSE is always (up to 8 dB) higher than the 

best prediction. This discrepancy can be explained by noting that in the low SNR 

region the optimal estimator is the conditional mean estimator rather than the MLE. 

For example, at very low SNR, observation is dominated by noise; in this case, the 

conditional mean estimate is the mean of the a priori parameter distribution, denoted 

by 6. We then have for the mean square error of the MLE 

E[(9ML - 6)2} = E[(9ML - Of) + E[(9 - Of). (6.8) 

The second term of the right-hand-side is the mean square error of the conditional 

mean estimate (i.e., the variance of the a priori parameter distribution). The first 

term of the right-hand-side is always greater than zero. Obviously, in this region, the 

*We also notice that below some SNR level the WWB is tighter than the ZZB. This has been db- 
served in some other applications [14]. To explain this (and then obtain a uniform best performance 
bound), one may want to establish a connection between the Weiss-Weinstein-type bound and the 
Ziv-Zakai-type bound. This problem is not solved yet but Ref. [13] has made some trials. 
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Figure 6-3: Example signal ambiguity functions for source range estimation at dif- 
ferent true source range positions: (a) 3812 m (dashed line); (b) 4125 m (solid line); 
and (c) 4438 m (dashdot line). The dotted lines indicate individual true source range 
positions. 

MLE has a larger mean square error than the conditional mean estimator and is no 

longer achievable by any fundamental performance bound. 

Although the multiple-test point WWB does increase the bound particularly 

around the threshold region, evaluation of the one-test point WWB indicates the 

dominating ambiguity behavior through the optimal test point: close to zero at high 

SNR; average dominating sidelobe point in the transition region. Fig. 6-3 shows some 

ambiguity functions at different true range positions. Clearly, all those plots are 

characterized by a multi-modal structure. Accordingly, the optimal test points in the 

transition region fall between 500 m and 620 m, which correspond to some high-level, 

distant sidelobes as seen from Fig. 6-3. 

In Section 4.4.1, we have applied the two-point estimation error probability to 

analyze the effects of different ambiguity components of the surface. Given a true 

source range, the error probabilities and the probabilistic square errors associated with 

a close mainlobe point, a distant mainlobe point and a sidelobe point are evaluated 

using the error expression in (3.45). Comparing Fig. 4-18 to Fig. 6-1, we find that 

the results of error analysis are consistent with the bound's behavior.   Indeed, as 
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mentioned in Section 4.5.1, the predicted SNR is -3 dB using the mean point of 

threshold predictions at 24 uniformly spaced parameter points or -2 dB using the 

83-percentile point. The latter one better describes the MLE simulation results. 

6.2.1    Number of Snapshots 

Number of independent snapshots plays a similar role as the signal-to-noise ratio. To 

obtain an asymptotic performance for parameter estimation, one may increase either 

the signal-to-noise ratio or the number of snapshots. As mentioned in Section 3.2.1, 

number of snapshots is determined by the observation time and the correlation time 

of the signal process [50]. This is true under the condition that the signal process is 

stationary during the entire observation period. Therefore, for a short-term stationary 

process, number of snapshots is quite limited. 

The short-term stationarity assumption is often true for the problem of passive 

source localization, and there are some practical concerns regarding the number of 

snapshots. 2 In this section, we want to apply some Bayesian performance bounds 

for two fundamental issues. First, given the SNR, how many snapshots are required 

to achieve the asymptotic performance. Second, how to predict the performance in 

the snapshot-deficient case. 

We have already seen that the snapshot number (L) is explicitly included in per- 

formance bounds through (3.33), (3.35) and (3.45). We evaluate the Bayesian CRB 

and ZZB for the above source range estimation problem. The number of snapshots 

varies from 1 to 48, and the SNR is fixed at -3 dB. The results are shown in Fig. 6-4, 

and the MLE simulations are also plotted. A similar threshold behavior is observed 

in regard to the number of snapshots. While the CRB is almost a linear function of 

the snapshot number (in logarithmic scale), the ZZB does follow the MLE simula- 

tions. To operate in the asymptotic region, at this SNR, we should use 14 or more 

2For example, Ref. [7] has discussed the snapshot deficiency due to the stationarity duration 
limits imposed by source transiting the resolution cell, and the bandwidth limits to avoid the phase 
distortion in estimation of the covariance matrix. As mentioned there, most adaptive algorithms rely 
on estimation of a sample covariance matrix; without enough snapshots, this matrix is rank-deficient 
or poorly conditioned. 
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Figure 6-4: Performance bound as a function of the snapshot number for source 
range estimation. Solid line: ZZB; dotted line: BCRB; and *: MLE simulations. 
Sensor-averaged SNR is -3 dB. 

independent snapshots. Considering the sensor number is 16 in this example, 16 or 

more snapshots would be preferred. 

Fig. 6-5 shows the two-point estimation errors at different ambiguity points. We 

can clearly see the sidelobe contributions when the snapshot number varies from 5 to 

25, and the sidelobe errors dominate when the number of snapshots is smaller than 

10. 

In Fig. 6-5(b), we also notice that at SNR = -3 dB, even with 25 snapshots 

the distant mainlobe point contributes more to the estimation error than the close 

mainlobe point. Accordingly, the CRB is not closely achieved. The opposite is also 

true: with a few snapshots, the CRB can not be closely achieved even at very high 

SNR. Let us look at an extreme case with only one snapshot available, as given in 

Fig. 6-6. Among three Bayesian bounds, only the ZZB is within 5 dB from the 

MLE simulations for SNR up to 20 dB. This is again explained by noting that the 

sidelobe contribution is always high (Fig. 6-7). We would expect some intersections 

in error curves associated with the sidelobe points and the mainlobe points, but at 

a practically impossible high SNR. This is understandable because a few (even three 
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Figure 6-5: Probabilistic square errors as a function of the snapshot number: (a) at 
each scanning source range (The horizontal line in the middle corresponds to the true 
source range); (b) at representative ambiguity points - close mainlobe point (4124.5 
m, dashdot line), distant mainlobe point (4110.5 m, dashed line), and distant sidelobe 
point (3580.5 m, solid line). 
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Figure 6-6: Performance bound evaluation for source range estimation with a single 
snapshot. Solid line: ZZB; dashdot line: multiple-test point WWB; dashed line: 
one-test point WWB; dotted line: BCRB; and *: MLE simulations. 

or four) snapshots would be needed to tell the statistics of a random process. 

Therefore, in terms of the effect on performance, the number of snapshots and 

the signal-to-noise ratio are not necessarily coupled according to an inverse-linear 

relation. In any case, the Ziv-Zakai bound gives the closest performance prediction. 

6.2.2    Incoherent Frequency Averaging 

Broadband processing has been investigated in the application of matched-field meth- 

ods, aiming at exploiting the source frequency structure. For a multi-tone, random 

stationary source, a typical approach is incoherently averaging the ambiguity outputs 

across frequencies [9,17, 51]. Because the sidelobe positions are frequency-dependent, 

in this way one would expect to average out the sidelobes and thus improve the peak- 

to-sidelobe ratio. A rigorous analysis of incoherent frequency averaging is difficult 

because first, the frequency-dependence of the sidelobe position is complicated (cf. 

Section 4.1.1), and second, how the sidelobe structure (level and position) determines 

the estimation performance needs to be quantitatively analyzed. In this section, we 

would look at the second issue using the Bayesian performance bounds and error 
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Figure 6-7: Probabilistic square errors as a function of SNR at different ambiguity 
points: close mainlobe point (4124.5 m, dashdot line); distant mainlobe point (4110.5 
m, dashed line); and distant sidelobe point (3580.5 m, solid line). Only one snapshot 
is used. 

analysis we have developed. 

Back to the source range estimation problem, we now use ten pilot tones uniformly 

spread from 53 Hz to 197 Hz. To incorporate more ambiguity points, we assume the 

source range varies from 3000 m to 6000 m. For each pilot tone, we assume ten 

snapshots available. As derived in Appendix B, the maximum likelihood estimate is 

given by 

M 

?ML = arg max J^ ^ \Ri{fm)]g{fm, Of (6.9) 
m=l 1=1 

This is a linear summation across frequencies. 

Fig. 6-8 presents the MLE simulation results as well as the performance bounds. 

For the multi-frequency ZZB, the error approximation developed in Appendix C.2.2 

is used. This error approximation works well as seen from the ZZB (black line). 

Compared to the single-frequency case (Fig. 6-1), the multi-frequency bounds (as well 

as the MLE simulations) are nearly shifted versions toward low SNR. The threshold 

SNR predicted by the ZZB is now about -12 dB. 
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Figure 6-8: Performance bound evaluation for source range estimation with ten fre- 
quency components and ten snapshots for each frequency. Solid line: ZZB; dash- 
dot line: multiple-test point WWB; dashed line: one-test point WWB; dotted line: 
BCRB; and *: MLE simulations. 

The above results do not justify the underlying reasoning for incoherent frequency 

averaging. Note that we now have 10 (frequencies) x 10 (snapshots/frequency) in- 

dependent measurements, ten times of that for the single-frequency case. This con- 

tributes to about 5 to 10 dB SNR gain. To look at the sidelobe effect after incoherent 

frequency averaging, we now use a single snapshot for each frequency so the number 

of independent measurements is the same as the single-frequency case. The results 

(Fig. 6-9) are similar to those for single-frequency case (Fig. 6-1). To better view 

the difference, we plot the Ziv-Zakai bound evaluated for single-frequency component 

at 53 Hz, 101 Hz and 197 Hz, individually, as well as ten frequency components by 

incoherent averaging. As shown in Fig. 6-10, the bound at 101 Hz is a little higher in 

the asymptotic region, while the 53 Hz one enters the transition region a bit earlier. 

However, the ten-frequency one is hardly distinguishable from that at the highest 

frequency, only a bit smaller in the transition region. 

This doesn't mean the incoherent frequency averaging cannot reduce the side- 

lobe effect. Fig. 6-11 shows some ambiguity functions given the true source range 

at 4500 m.   As expected, the signal field is more ambiguous at low frequency and 
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Figure 6-9: Performance bound evaluation for source range estimation with ten fre- 
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Figure 6-10: Ziv-Zakai bound for source range estimation with single frequency com- 
ponent and ten snapshots: 53 Hz (Dashdot line), 101 Hz (Dashed line), and 197 Hz 
(Dotted line); with ten frequency components and single snapshot for each frequency 
(Solid line). 
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Figure 6-11: Example signal ambiguity functions for source range estimation at dif- 
ferent frequencies: (a) 53 Hz; (b) 101 Hz; (c) 197 Hz; and (d) incoherently averaged 
over ten frequencies. The dotted line indicates the true source range. 

less ambiguous at high frequency. The frequency-averaged ambiguity function does 

have level-reduced sidelobes. This can also be observed from the point estimation 

errors associated with different representative ambiguity points (Fig. 6-12). With 

single-frequency component (53 Hz, 101 Hz and 197 Hz), the estimation error by a 

representative sidelobe point is larger than that by a representative mainlobe point 

at SNR ~ 3 dB, 1 dB, and -1 dB, individually. These are about consistent with the 

bound's evaluations. However, with ten frequency components, the sidelobe error is 

larger than the mainlobe error at SNR ?a -2 dB. This is attributed to reduced sidelobe 

levels. 

On the other hand, at SNR = -1 dB, although error at any single sidelobe point is 

smaller than that at the representative mainlobe point, there are many points making 

comparable contributions (Fig. 6-13). This is consistent with the frequency-averaged 

ambiguity function, which, compared to the single-frequency ones, maintains a higher- 

level baseline across the parameter interval. As a result, the overall mean square error 

is close to that of 197 Hz and demonstrates a threshold behavior at this SNR. 

To conclude this section, the incoherent frequency averaging does reduce the side- 
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Figure 6-12: Probabilistic square errors as a function of SNR at a close mainlobe 
point (dashdot line), a distant mainlobe point (dashed line), and a distant sidelobe 
point (solid line): (a) 53 Hz; (b) 101 Hz; (c) 197 Hz; and (d) incoherently averaged 
over ten frequencies. 

(a) 

-80 
dB 3000 4000 

Scanning Source Range (m) 
(b) 

Figure 6-13: Probabilistic square error as a function of SNR at each scanning source 
range: (a) 197 Hz; (b) incoherently averaged over ten frequencies. The vertical line 
in the middle corresponds to the true source range. 
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lobe level but increase the overall ambiguity background as well. In this example, 

the resulted performance is similar to that achieved by a high frequency component. 

Even in this case, the frequency-averaging may still be preferred because the ambigu- 

ity peak at high frequency is often more sensitive to environmental perturbations [51]. 

To improve the overall performance, one needs to judiciously choose a set of frequency 

components. In addition, for such an averaged ambiguity function, the threshold SNR 

predicted by the two-point estimation error analysis can be a bit lower. 

6.3    Environmental Parameter Estimation 

Before we go to more complicated source localization problems, such as those includ- 

ing environmental uncertainty/mismatch, let us look at several examples of environ- 

mental parameter estimation. 

As mentioned in Section 4.1.3, for most bottom properties (e.g., wave-speed, at- 

tenuation and density), the associated signal field is much less ambiguous, compared 

to the source location estimation case. This is because a bottom parameter enters 

the signal field through some high-order modes, which are often less significant at 

long-range. Accordingly, some ambiguity points on a wide mainlobe are the major 

factors in determining the estimation performance, and we can hardly see any thresh- 

old behavior due to sidelobes. For example, in estimation of sediment wave-speeds 

(top and bottom) under the example SWellEX-3 environment, the asymptotic region 

(linear SNR-dependence) almost extends to the no-information region at very low 

SNR (Figs. 6-14 and 6-15). At input SNR = -2 dB (output SNR « 15 dB), the 

resolution is about 6 m/s for both top and bottom wave-speeds. 

In fact, to estimate those ambiguity-free parameters, a local algorithm often works 

well, which iteratively improves a starting environmental model through a gradient- 

directed searching scheme [57]. For a multiple-parameter estimation problem, the 

ambiguity surface often shows a multi-modal structure, and a local algorithm can be 

trapped on a local optimum model, particularly when some geometry parameters are 

included.  As discussed in Section 4.1.3, for the given SWellEX-3 environment, the 
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Figure 6-14: Performance bound evaluation for sediment top wave-speed estimation. 
Solid line: ZZB; dashdot line: multiple-test point WWB; dashed line: one-test point 
WWB; dotted line: BCRB; and *: MLE simulations. 
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Figure 6-15: Performance bound evaluation for sediment bottom wave-speed estima- 
tion. Solid line: ZZB; dashdot line: multiple-test point WWB; dashed line: one-test 
point WWB; dotted line: BCRB; and *: MLE simulations. 
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sediment layer plays a significant role in determining the signal field. Thus even for 

a single geometry parameter (sediment thickness), the associated signal field demon- 

strates a strong ambiguity (cf. Fig. 4-6). 

We evaluate three Bayesian bounds for this sediment thickness estimation prob- 

lem and the results are given in Fig. 6-16. Also plotted is the MLE performance 

simulation. The chosen parameter sampling step is 0.01 m to maintain a good field 

linearity. Some interesting behaviors are observed. First, the Bayesian CRB is about 

5 dB below the MLE mean square error even in the high SNR region. This is because 

the local Fisher information shows a strong inhomogeneity across the parameter in- 

terval. Second, the one-test point WWB doesn't converge to the CRB. As seen in 

Fig. 6-17, the estimation error due to the second point from the true parameter point 

is always higher than that due to the first point, and thus the optimum test point of 

the WWB doesn't go to zero. Besides, the WWB uses a different approach to combine 

the local performance at each individual parameter point. Third, the multiple-test 

point WWB doesn't converge to the one-test point one. This says even at high SNR 

the estimation error is not determined by a single close mainlobe point. 

In any case, the ZZB gives consistent tight performance predictions. The predicted 

threshold SNR is about 8 dB. The threshold SNR is also estimated using the approach 

described in Section 4.5.1 and the results are given in Table 6.2. Each prediction at 

a given true parameter point is obtained as described in Fig. 6-17. The mean point 

of 19 such predictions is 8 dB, and the 68-percentile point is 10 dB, which is a good 

indication of the threshold in MLE simulations (Fig. 6-16). 

Compared to the range estimation case, both the mainlobe and sidelobe behaviors 

in thickness estimation are highly inhomogeneous: less ambiguous at shallower depths; 

more ambiguous at deeper depths. Indeed, at deeper depths, the nearby correlation 

levels are pretty high, and some small sidelobe peaks overlie the high-level mainlobe. 

This could be attributed to the attenuation factor, which makes the rather ambiguous 

field smoother as the sediment depth increases. 
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Figure 6-16: Performance bound evaluation for sediment thickness estimation with 
uniform prior distribution. Solid line: ZZB; dashdot line: multiple-test point WWB; 
dashed line: one-test point WWB; dotted line: BCRB; and *: MLE simulations. 
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Figure 6-17: Probabilistic square errors for sediment thickness estimation as a func- 
tion of SNR at different ambiguity points: close mainlobe point (24.49 m, dotted 
line); close mainlobe point (24.48 m, dashdot line); distant mainlobe point (24.34 m, 
dashed line); and distant sidelobe point (60.32 m, solid line). The true thickness is 
at 24.50 m. 
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Table 6.2:    Threshold SNR predictions at  individual true parameter points in 
sediment thickness estimation. 

Sediment Thickness (m) SNR! (dB) Sediment Thickness (m) SNR! (dB) 

14.5 5 39.5 8 
17.0 4 42.0 10 
19.5 6 44.5 11 
22.0 6 47.0 12 
24.5 8 49.5 9 
27.0 7 52.0 10 
29.5 6 54.5 10 
32.0 6 57.0 10 
34.5 7 59.5 9 
37.0 8 

Mean Point 8 68-percentile Point 10 

6.3.1    Gaussian Parameter Model 

The Gaussian distribution often makes more sense in describing the random model 

for an environmental parameter. This might be because it better describes one's 

confidence about that the parameter falls into gradually widened intervals. Given the 

mean mg, and the standard deviation og, the parameter distribution can be stated 

by 

P(0) 
yj2nGQ 

exp 
( 

(e-mgf 
2aj 

(6.10) 

Hence the Fisher information due to the a priori parameter distribution (cf. (3.12)) 

is now 

JA — —ö- (6.11) 

For general Bayesian estimation problem, the maximum a posteriori estimator 

(MAP) is shown to minimize the Bayes risk for a "hit-or-miss" cost function [43]. 

In previous examples, the usage of the maximum likelihood estimator is justified by 
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assuming a uniform parameter distribution. Note that 

P(W = «). (,12) 

When the prior parameter distribution does not favor one parameter over the others, 

the MLE is equivalent to the MAP. However, for a Gaussian prior distribution, we 

should use the true MAP algorithm, which for the given data model is stated by 

&MAP{R) = arg max 
0 Qi(/o, 0) + Q2(/o, 0) ■ J2 l»l(/o)g(/o, 0)? + lnp(0) 

i-i 

,   (6.13) 

and Qi and Q2 are defined in (B.6) and (B.7), respectively. 

We now assume a Gaussian distribution for sediment thickness with mg = 37 m 

and og = 7.5 m. For numerical evaluation, this distribution is cut off at 12 m and 

62 m. The results are shown in Fig. 6-18. Because the effective parameter interval 

is narrowed, the local performance variation is reduced such that the CRB, WWB 

and ZZB converge better at high SNR. The threshold SNR is about the same due 

to some significant close sidelobe points overlying the mainlobe. It is interesting to 

note that the MAP simulation has a peak at about SNR = -11 dB. This is actually 

determined by the relative size of the a priori information term and the likelihood 

function term (see (6.13)). At high SNR, the likelihood function term dominates and 

the performance is similar to that of the MLE; as the SNR decreases, the a priori 

information term becomes important and drags the overall mean square error down 

to the variance of the a priori parameter distribution. 

Although no example is presented for multi-dimensional environmental parameter 

estimation, discussions on some fundamental issues can be found in the sections fol- 

lowed, which consider multi-dimensional source and source/environmental parameter 

estimation. 
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Figure 6-18: Performance bound evaluation for sediment thickness estimation with 
Gaussian prior distribution. Solid line: ZZB; dashdot line: multiple-test point WWB; 
dashed line: one-test point WWB; dotted line: BCRB; and *: MAP simulations. 

6.4    Source Range Estimation with Unknown Depth 

In previous examples, we have investigated the capabilities of three Bayesian perfor- 

mance bounds to capture the ambiguity in estimation of a single parameter. Gen- 

eralization to estimation of two or more parameters is straightforward, and most of 

bound's properties still hold. The problem, however, is more complicated due to a 

number of factors. 

First, the ambiguity function in multi-dimensional parameter space often shows 

strong multi-modal behavior. Given the true parameter position, one needs to find a 

set of important sidelobe points, which involves a global optimization problem. Sec- 

ond, there can be strong interactions (coupling) among parameters. This must be 

taken into account in understanding the resulted performance. Third, the signal field 

and the associated local property can be highly inhomogeneous across the parame- 

ter space. A Bayesian bound measures the averaged performance and thus can be 

misleading under strong local performance inhomogeneity. Finally, as a result, the 

computational effort can be significant. 

Let us first consider a typical source localization problem, i.e., simultaneous 
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range/depth estimation. Compared to the single range or depth estimation case, 

the associated signal field often shows a stronger ambiguity as well as inhomogene- 

ity in a large scanning region of source location. Using the SWellEX-3 example, we 

assume an interval of [3500 4750] m for source range, [30 150] m for source depth. 

Again, we use ten snapshots of a single frequency component at 101 Hz. 

Fig. 6-19 displays the Ziv-Zakai bound as well as the MLE simulation results in 

range estimation. For comparison, the previous results for a fixed source depth are 

also plotted. The MLE simulation with unknown depth enters the transition region 

a bit earlier by 2 dB. This is captured by the ZZB by observing the departure from 

the linear region, and the predicted resolution is about 10 m at input SNR = - 3 

dB (1 m at input SNR =12 dB). However, both cases surprisingly agree well in the 

asymptotic region. 

Recall that in Section 4.3.3 we have discussed the effect on estimation of one pa- 

rameter by introducing uncertainties in other parameters. This effect is incorporated 

using a projection of the multi-dimensional ambiguity function, which, in this exam- 

ple, is obtained by choosing the maximum of the range-depth ambiguity surface for 

each range point. Fig. 6-20 displays the eigenvectors of the high-SNR resolution ma- 

trix specified by the CRB; they are all almost parallel to either of the parameter axes, 

indicating a uniform weak coupling between range and depth. Thus, the ambiguity 

mainlobe shape is maintained with/without depth uncertainty (cf. Fig. 4-11). This 

explains the performance consistency in the asymptotic region (cf. Section 4.3.1). 

The threshold behavior can then be analyzed based on the projected ambiguity 

function (see the dashdot line in Fig. 4-11). Given the true source range at 4125 m, 

the resulted point estimation errors are plotted in Fig. 6-21. Compared to Fig. 4-18, 

the representative mainlobe points are about the same but the sidelobe point is now 

at 4724 m (cf. Fig. 4-11), and the threshold SNR is about -2 dB, one dB higher. 

Repeat this analysis for a preselected set of true parameter points, so we have a 

contour plot of the predicted threshold SNR within the entire parameter interval. 

As seen from Fig. 6-22, the signal field is inhomogeneous in regard to the sidelobe 

behavior: more ambiguous at mid-depth particularly for short- and long-ranges; and 
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Figure 6-19: Performance bound evaluation for source range estimation. Solid line: 
ZZB; *: MLE simulations, both with unknown depth; dotted line: ZZB; +: MLE 
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Figure 6-21: Probabilistic square errors as a function of SNR at different projected 
ambiguity points: close mainlobe point (4123 m, dashdot line); distant mainlobe 
point (4112 m, dashed line); and distant sidelobe point (4724 m, solid line). The true 
source location is at (4125 m, 60 m). 

in general, deeper (or shallower) the source, less the field ambiguity. This could be 

attributed to the sound velocity profile in the water column, which switches from 

downward refracting to isovelocity at the mid-depth. Fig. 6-23 gives the histogram of 

the threshold SNR predictions. The mean point is -1 dB and the 75-percentile point 

falls between 0 dB and 1 dB. These are consistent with the MLE simulations. 

Some similar observations are also available for depth estimation with/without 

range uncertainty, which are not presented. 

6.4.1    Comments on Numerical Computation 

In this example, the parameter sampling step is 0.5 m for source range, and 0.1 m for 

source depth. These are chosen based on the linearity test. Accordingly, we have 2501 

(range) x 1201 (depth) parameter points. Even for this two-dimensional problem, 

direct calculation of the ZZB is rather time-consuming. Some approximations are 

used per discussions in Section 6.1. 

First, the parameter perturbation, S in (3.24), is sparsely sampled at the ambiguity 
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valleys and densely sampled around the mainlobe and sidelobes. As a result, we have 

316 perturbation points for source range. 

Second, the averaged error probability to be maximized in (3.24) 

/. 
min[p(0),p(0 + A)] • Pe(0,0 + A)d0 (6.14) 

0 

involves an integration over the parameter space. The numerical integration step is 

eight times of the parameter sampling step for both range and depth. 

Third, Eq. (6.14) under constraint aTA = S (cf. (3.24)) can be a multi-modal 

function of A. In this example, A includes range perturbation and depth perturba- 

tion, and we need to find the depth perturbation maximizing (6.14) for each range 

perturbation 8. Some typical behaviors of this function are plotted in Fig. 6-24. To 

find the peak of each plot, a local searching algorithm is used. We also notice that for 

two consecutive range perturbations, peak of (6.14) only shifts slightly. Hence, the 

local algorithm initially starts from the origin (zero perturbation) and then for the 

consequent range perturbations, starts from the peak for the last range perturbation. 

This algorithm works well except for the case of (d). Case (d) corresponds to a large 

perturbation at high SNR, which obviously can be ignored. At some SNR's around 

the threshold, the exhausting searching is also implemented, but the improvement is 

insignificant. 

6.5    Source Range Estimation with Environmental 

Uncertainty 

In this section, environmental uncertainties are added to the previous source range es- 

timation problem. The uncertain parameters considered are the compressional wave- 

speeds at top and bottom of the sediment layer, which determine the number of prop- 

agation modes in the water column and the fraction of sound penetration reflected 

back from the sediment. Therefore, these quantities are of the most sensitive param- 

eters for sound waveguide propagation. We assume the sediment top wave-speed is 
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Figure 6-24: Averaged error probability to be maximized in evaluation of the ZZB 
for source range perturbation of: (a) 36 m; (b) 500 m, SNR = -11 dB; (c) 36 m; (d) 
500 m, SNR = 5 dB. 

uniformly distributed over an interval of [1550 1575] m/s and the sediment bottom 

wave-speed is uniformly distributed over an interval of [1575 1625] m/s. Again, the 

source range is uniformly distributed from 3500 m to 4750 m. 

Similar to the two-dimensional case, evaluation of the bound in a three-dimensional 

parameter space is computationally intensive and the numerical performance needs 

to be carefully balanced with the computations. Based on the results of the linear- 

ity test, the parameter sampling steps used are 0.5 m for source range and 1 m/s 

for both sediment wave-speeds. These are also used as the minimum test points of 

the WWB. Up to 120 test vectors pre-selected around the mainlobe and sidelobes are 

used in evaluation of the WWB, each of which has a non-zero perturbation only along 

one of dimensions. At high SNR, only a small close-to-zero subset of test vectors is 

used to avoid the singularity of the matrix Q in (3.18). The integration path of the 

ZZB for source range estimation consists of 316 sampling points within the pertur- 

bation interval of [0 1250] m. This path starts from the sampling step, 0.5 m, and 

is densely sampled at the mainlobe and sidelobe positions. The integration steps for 

three parameters are two, four and three times of the corresponding sampling steps, 
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Figure 6-25: Performance bound evaluation for source range estimation with environ- 
mental uncertainty. Solid line: ZZB; dashdot line: multiple-test point WWB; dotted 
line: BCRB; and *: MLE simulations. 

respectively. Under these configurations, the evaluation time is several minutes for 

the BCRB, 10 hours for the ZZB (of source range estimation only) with local search- 

ing algorithm, and 24 hours for the WWB without optimization, all using a 600-MHz 

PC. 

Fig. 6-25 gives the evaluation results of the BCRB, WWB and ZZB as well as the 

MLE simulations for source range estimation. Compared to Fig. 6-1, some similar 

behaviors are observed. At high SNR, all the three bounds agree with the MLE 

simulations. Below SNR = -3 dB, the MLE performance diverges significantly, which 

is predicted by the WWB and ZZB. At low SNR, both the WWB and ZZB converge 

to the variance of the a priori parameter distribution. Again, the ZZB is the best 

bound for most (higher) SNR levels. 

Despite those similarities, source localization with environmental uncertainty shows 

worse performance than that with perfectly known environment, particularly in the 

intermediate to high SNR region, as shown in Fig. 6-26. For example, at input SNR 

= 7 dB, the root-mean-square error is about 2.7 m for the former case versus 1.6 m 

for the latter case. At input SNR = -1 dB, this is 11 m versus 4.8 m. 
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Figure 6-26: Performance bound evaluation for source range estimation. Solid line: 
ZZB; *: MLE simulations, both with unknown sediment wave-speeds; dotted line: 
ZZB; +: MLE simulations, both with known sediment wave-speeds. 

To explain the difference, let us first look at the ambiguity function in the problem. 

Fig. 6-27 gives such an example for the given source range of 4125 m, sediment top 

wave-speed of 1572 m/s, and bottom wave-speed of 1593 m/s. The dotted line is 

the projection onto the range dimension, which, at each scanning range point, is 

the peak value of the top-bottom wave-speed ambiguity surface. As discussed in 

Section 4.2, the source range is strongly coupled to the sediment wave-speeds. This 

can be seen from the mainlobe shape of the projected ambiguity function, which 

becomes wider and has increased levels. This strong coupling exists across the entire 

three-dimensional parameter space (cf. Fig. 6-28). Consequently, we have increased 

mean square errors at high SNR levels. 

The ambiguity behavior can be further analyzed using the two-point estimation 

error probability. For the given projected ambiguity function, the probabilistic square 

error at each scanning source range is evaluated and shown in Fig. 6-29(a). The 

peak value at each SNR specifies the representative ambiguity point, and shifting 

of such points at different SNR's delimits different operation regions in parameter 

estimation.   Usually, we have three types of representative points:  in addition to 
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Figure 6-27: Signal ambiguity function for source range estimation with known sedi- 
ment wave-speeds (solid line) and with unknown sediment wave-speeds (dashdot line). 
The dotted line indicates the true source range. 
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the close-mainlobe points describing the asymptotic behavior and the sidelobe points 

determining the large performance departure, there are some distant mainlobe points 

in the middle and the one just before the first dominating sidelobe point is denoted 

as the representative one. In this example, however, the mainlobe behavior is a little 

more complicated. 

As shown in Fig. 6-29 (b), in addition to the regular distant mainlobe point (dashed 

line), below SNR = 1 dB, another cluster of mainlobe points, about 42 m away from 

the mainlobe peak, contributes most to the mean square error. This actually corre- 

sponds to the mainlobe protrusion as seen in Fig. 6-27. Due to relatively increased 

mainlobe contributions, the predicted threshold SNR is now at about -5 dB, a bit 

lower compared to the case with perfectly known environment. 

Fig. 6-30 displays the threshold SNR's predicted at a 13 (range) x 3 (sediment 

top wave-speed) x 5 (sediment bottom wave-speed) subset of parameter points. Each 

two-dimensional contour is obtained by fixing one parameter and varying the other 

two. Clearly, the field sidelobe ambiguity is quite uniform at different sediment wave- 

speeds, particularly for the top one, showing that within the chosen parameter inter- 

vals, variations of sediment wave-speeds do not change much the relative mainlobe and 

sidelobe structure in source range estimation. It is interesting to note that variation 

of the sidelobe ambiguity follows a coupled way between both sediment wave-speeds. 

For bottom wave-speed above 1599 m/s, the coupling is similar to that of the mainlobe 

case, but below 1599 m/s, it is opposite. This has not been explained yet. 

The mean threshold prediction is -4 dB and the 75-percentile point lies between 

-4 dB and -3 dB (Fig. 6-31). These describe the MLE simulations well. The effect 

of the mainlobe protrusion is also seen from that between SNR = -3 dB and 3 dB, 

the MLE simulation is 2 to 3 dB higher than the ZZB, which itself is about 1 to 2 

dB higher than the WWB. This slight threshold behavior is also predicted using the 

same approach described in Fig. 6-29, and the results are shown in Fig. 6-32. The 

mean point is 0 dB and the 75-percentile point is about 2 dB. Compared to prediction 

of the sidelobe threshold, the mainlobe one is a bit difficult because it is harder to 

locate the mainlobe protrusion at some parameter points. 
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Figure 6-29: Probabilistic square errors as a function of SNR: (a) at each scanning 
source range (The horizontal line in the middle corresponds to the true source range); 
(b) at different ambiguity points - close mainlobe point (4122 m, dashdot line), distant 
mainlobe point (4112 m, dashed line), mainlobe protrusion point (4184 m, dotted 
line), and distant sidelobe point (3568 m, solid line). The sediment wave-speeds are 
assumed unknown. 
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Figure 6-30: Contour of threshold SNR in dB for range estimation predicted at indi- 
vidual parameter points: (a) sediment bottom wave-speed at 1599 m/s; (b) sediment 
top wave-speed at 1563 m/s; (c) source range at 4125 m. 
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Figure 6-31: Histogram of threshold SNR for range estimation predicted at individual 
parameter points: sidelobe issue. 
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Figure 6-32: Histogram of threshold SNR for range estimation predicted at individual 
parameter points: mainlobe issue. 

Finally, we should point out that the effect of the ambiguity projection is better 

understood when plotting the average error probability to be maximized in evaluation 

of the ZZB (cf. (6.14)). Fig. 6-33 shows this averaged error probability as a function of 

the sediment top and bottom wave-speed perturbations for each chosen source range 

perturbation (8 in (3.24)) at SNR = 5 dB. Clearly, errors by small range perturbations 

dominate at this SNR, and for this small range perturbation, the peak averaged error 

probability is obtained by small sediment top and bottom wave-speed perturbations. 

The strong coupling between the top and bottom wave-speeds is also observed 

in Fig. 6-33. It is often desired by some adaptive searching algorithms to establish 

a decoupled parameter set. For example, in evaluation of the ZZB, we need to find 

the maximum for each of plots in Fig. 6-33. Fortunately, they are unimodal, and a 

gradient-based algorithm works well. Nonetheless, if these plots are multi-modal and 

the parameters are strongly coupled (as they are in this problem), an adaptive algo- 

rithm may converge on a wrong local maximum. In this case, a global optimization 

algorithm may be appropriate. 
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Figure 6-33: Averaged error probability to be maximized in evaluation of the ZZB 
for source range perturbation of: (a) 5 m; (b) 116 m, both at SNR = 5 dB. 

6.6    Source Range Estimation with Environmental 

Mismatch 

In Section 5.3, we have presented an example of mismatch analysis in bearing es- 

timation using incorrect array tilt angle. Mismatch analysis in the matched-field 

problem can be more complicated, particularly when involving many parameters. In 

that case, behaviors (individual and interactive) of the related ambiguity functions 

in (5.24), (5.25) and (5.26) can be hard to predict. However, as long as the size of 

mismatch is within a reasonable range (for example, parameter interval assumed for 

a regular inversion algorithm) so that the relative mainlobe and sidelobe ambiguity 

structure is maintained, the performance results are well understandable. 

Fig. 6-34 shows such an example for source range estimation under the studied 

SWellEX-3 environment, in which the assumed sediment wave-speeds are 1572 m/s 

on the top and 1593 m/s on the bottom. The top panel is for true wave-speeds of 

1565 m/s (top) and 1600 m/s (bottom), and the bottom panel is for 1550 m/s (top) 

and 1625 m/s (bottom). Comparing Fig. 6-34 to Fig. 6-1, we see that with a slight 

mismatch, the mean square error at high SNR shows a slight increase, for example, 
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Figure 6-34: Performance bound evaluation for source range estimation with envi- 
ronmental mismatch: ZZB (solid line) versus MLE (*). True sediment wave-speeds 
are (a) 1565 m/s (top) and 1600 m/s (bottom); (b) 1550 m/s (top) and 1625 m/s 
(bottom). The assumed wave-speeds are 1572 m/s (top) and 1593 m/s (bottom). 

from 1.62 m2 to 1.92 m2 at SNR = 7 dB; with further increased mismatch, the mean 

square error is almost independent of the SNR in the high SNR region. 

The probabilistic square errors at each scanning source range point as well as 

representative ambiguity range points given the true point at 4125 m are displayed in 

Figs. 6-35 and 6-36. We can clearly see the appearance of a mainlobe protrusion as 

well as sidelobes. As shown in Fig. 5-1, the major sidelobe level is a little lower, which, 

combined with the increased mainlobe level, results in a lower sidelobe threshold (- 

5 dB versus -3 dB in Fig. 4-18). Nonetheless, the mainlobe protrusion makes the 

performance enter the threshold region earlier. 

An observation different from the previous cases is that there is a narrow strip of 

strong error right on the right side of the true point. This actually corresponds to the 

region described in Section 5.2.2, in which the mismatched field is more correlated 

with the true field in contrast to the mismatched field at the true source position. 

Indeed, range points in this region dominate the error above SNRM and lead to a bias 

term in range estimation. The existence of the bias term is verified from the MLE 

simulations, as shown in Fig. 6-37. Above SNR « 5 dB, there is nearly a constant 
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Figure 6-35: Probabilistic square error as a function of SNR at each scanning source 
range. The sediment wave-speeds are mismatched as given in Fig. 6-34(b). The 
vertical line in the middle corresponds to the true source range. 

bias of 5.7 m. 

As mentioned in Section 5.3, the mismatch-introduced bias can be estimated us- 

ing the MZZB (cf. (5.49)). The square-root of the MZZB at SNR = 15 dB gives an 

estimate of 6.4 m. When evaluated at higher SNR's, this estimate should be more 

accurate since the variance is further decreased. The bias term can also be evalu- 

ated by implementing the perturbation integration of the ZZB (cf. (5.10)) over the 

mismatch-dominated region only. 

There are many other applications using the developed mismatch analysis. For 

example, one may concern, for a given parameter, how the bias term varies in the 

presence of different sizes of mismatch. Back to the previous range estimation prob- 

lem, we now assume 0.5%, 1%, 2%, 3%, 4%, and 5% mismatch for the sediment top 

wave-speed, respectively. At SNR = 11 dB, the resolution goes from 1 m at the 

no-mismatch case to about 192 m with 5% mismatch, as shown in Fig. 6-38. When 

generalized to include multiple parameters, the mismatch is not simply accumulated. 

Indeed, as discussed before, some parameters can be strongly coupled; accordingly, 

their mismatch effects are coupled as well.  Fig. 6-39 shows a contour of bias when 
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Figure 6-36: Probabilistic square errors as a function of SNR at different ambiguity 
points: close mainlobe point (4134 m, dashdot line); distant mainlobe point (4139 m, 
dashed line); mainlobe protrusion point (4071 m, dotted line); and distant sidelobe 
point (3579.5 m, solid line). The sediment wave-speeds are mismatched as given in 
Fig. 6-34(b). The true source range is at 4125 m. 
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Figure 6-37: Bias in source range estimation. The sediment wave-speeds are mis- 
matched as given in Fig. 6-34(b). The dotted line is the square-root of the ZZB at 
SNR = 15 dB. 
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Figure 6-38: Performance bound evaluation for source range estimation at different 
true sediment top wave-speeds. Bottom to top: 1572 m/s; 1564 m/s; 1556 m/s; 1541 
m/s; 1526 m/s; 1512 m/s; and 1497 m/s. The assumed top wave-speed is 1572 m/s. 

the true sediment wave-speeds vary from 1550 m/s to 1575 m/s (top) and from 1575 

m/s to 1625 m/s (bottom). For the true top wave-speed at 1550 m/s, if the true 

bottom wave-speed goes from the assumed 1593 m/s to the low end, i.e., 1575 m/s, 

the overall bias is further increased; if, however, the true bottom wave-speed goes to 

the high end, say 1620 m/s, the introduced bias is significantly reduced. 

Mismatch analysis can also be used to quantitatively investigate the importance 

of individual parameters. For example, we assume one percent mismatch for each 

of the sediment properties, and then evaluate the MZZB for each case. If the bias 

introduced by one parameter mismatch is large, knowledge about this parameter is 

important in determining the source location. As shown in Fig. 6-40, it is usually 

true that deeper the sediment property, less influential to the field. Compared to 

the no-mismatch case (bottom line in Fig. 6-40), we can hardly tell the effects of 

the density and attenuation in each layer and the wave-speed in the basement. One 

exception is the top wave-speed of the mudstone layer, which introduces a larger 

bias than that by the thickness of the sediment layer. Indeed, this top wave-speed is 

critical in determining the sound penetration reflected back to the water column. 
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Figure 6-39: Contour of bias in meter in source range estimation. True sediment 
wave-speeds range from 1550 m/s to 1575 m/s (top) and from 1575 m/s to 1625 m/s 
(bottom). The assumed wave-speeds are 1572 m/s (top) and 1593 m/s (bottom). 

Both sediment wave-speeds are of the most important parameters in this SWellEX- 

3 bottom model. Note that if all the parameters are simultaneously mismatched by 

one percent, the introduced bias is about 34 m. From Fig. 6-39, the bias given by one- 

percent mismatch for both wave-speeds (corresponding to the true top wave-speed at 

1556 m/s and the true bottom wave-speed at 1577 m/s) is about the same. The above 

results support our simulations in Section 6.5, in which only these two wave-speeds 

are included to describe the environmental uncertainty. 

Finally, we should point out that the above mismatch analysis is quite efficient in 

computation. Only the true field and the assumed field need to be calculated. Given 

the environmental uncertainty, we may evaluate the effects of possible mismatch for 

an assumed environmental parameter set. The system mismatch, for example, with 

incorrect array shape parameters, can be analyzed in the same manner. 

6.7    Comparison to SWellEX-3 Data Processing 

The SWellEX-3 experiment was conducted off the coast of San Diego in 1994. Fig. 6- 

41 [17] gives the location and bathymetry of the test site.  An acoustic source was 
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Figure 6-40: Performance bound evaluation for source range estimation with envi- 
ronmental mismatch. The top blue line corresponds to mismatch at all parameters; 
the bottom dashdot line corresponds to mismatch at no parameters. Specifications 
for mismatch at each individual parameter are given in Table. 6.3. 

Table 6.3: True and assumed environmental models in Fig. 6-40. Except otherwise 
stated in Fig. 6-40, each time only one parameter is mismatched by one percent. 

Bottom 
Property 

Assumed 
Value 

True 
Value 

Representation 
in Fig. 6-40 

Sediment 
Layer 

Top Wave-Speed (m/s) 1572 1556 Red Solid 
Bottom Wave-Speed (m/s) 1593 1577 Black Solid 

Thickness (m) 26 25.74 Cyan Solid 
Density (g/cnr1) 1.76 1.74 Blue Dotted 

Attenuation (dB/kmHz) 0.20 0.198 Red Dotted 

Mudstone 
Layer 

Top Wave-Speed (m/s) 1881 1862 Green Solid 
Bottom Wave-Speed (m/s) 3246 3214 Magenta Solid 

Thickness (m) 800 792 Yellow Solid 
Density (g/cm3) 2.06 2.04 Black Dotted 

Attenuation (dB/kmHz) 0.06 0.0594 Green Dotted 

Basement 
Wave-Speed (m/s) 5200 5148.5 Cyan Dotted 

Density (g/cma) 2.66 2.63 Magenta Dotted 
Attenuation (dB/kmHz) 0.02 0.0198 Yellow Dotted 

158 



towed at various depths along Track A, which was considered as a range-independent 

track with water depth of 198 m. A 64-sensor vertical linear array was deployed, 

spanning the bottom half of the water column. 

The transmitted signal included 10 pilot tones uniformly spread from 53 Hz to 

197 Hz. Each pilot tone was accompanied by four other low-level tones at frequencies 

increased by 2, 4, 6, and 8 Hz, respectively. Denote /,, i = 1, ..., 10, as the pilot tone 

frequencies. Then the input SNR's averaged across sensors and frequencies are 10, 0, 

-4, -8, and -12 dB for tone sets at fh fa + 2, /; + 4, /; + 6, and fc + 8, respectively. 

On July 30 between 18:28 and 18:35 GMT, the source was held at almost a 

constant depth of 60 m, and moved from 3500 m to about 4750 m. Our data processing 

is done for this 7-minute period. To compute the tone signal, each six seconds of time 

series (8192 sampling points) is Fourier analyzed using a 50% overlapped Kaiser- 

Bessel window. Accordingly, there are 154 snapshots for each tone in this period. All 

50 tone signals are used, which are provided by Phil Schey at SPAWAR San Diego. 

16 of the original 64 sensors are used with spacing of 5.625 m, equal to the half- 

wavelength at 133 Hz. The bottom sensor is at 192 m. To reduce the effects of 

source motion, only a single snapshot is used for each tone but all 10 tones at about 

the same level are used simultaneously. To calculate the replica field, an optimized 

bottom model [12] is used as shown in Fig. 6-42, which is slightly different from the 

model in Fig. 4-1. 

Figs. 6-43 through 6-46 give the source localization results. The search interval 

is 3500 m to 4750 m with 10 m increment for source range, 50 m to 70 m with 1 

m increment for source depth, and 8° to 12° with 0.5° increment for array tilt. The 

maximum likelihood estimator in (4.25) is used to find estimates of the range, depth 

and array tilt. At input SNR = 10 dB, we see that all the range estimates are around 

the mainlobe and follow the source track well. As SNR decreases, some estimates 

occur at sidelobe points. At SNR = -4 dB, the number of sidelobe points is over 

one-third of the total estimates. At SNR = -8 dB, no useful information regarding 

the source location can be found. 

To compare with the bound's prediction, we now fix the source depth at the opti- 
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Figure 6-41: SWellEX-3 experiment area (from Ref. [17]). 
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Figure 6-42: Optimized SWellEX-3 environment. Source and receiver configuration 
is also shown. 
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Figure 6-43: SWellEX-3 source localization: (a) source range; (b) source depth; and 
(c) array tilt angle. The input sensor-averaged SNR is 10 dB. 
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Figure 6-44: SWellEX-3 source localization: (a) source range; (b) source depth; and 
(c) array tilt angle. The input sensor-averaged SNR is 0 dB. 
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Figure 6-45: SWellEX-3 source localization: (a) source range; (b) source depth; and 
(c) array tilt angle. The input sensor-averaged SNR is -4 dB. 
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Figure 6-46: SWellEX-3 source localization: (a) source range; (b) source depth; and 
(c) array tilt angle. The input sensor-averaged SNR is -8 dB. 
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Figure 6-47: SWellEX-3 source range estimation. The input sensor-averaged SNR is 
(a) 10 dB; (b) 0 dB. 

mum value of 61 m and array tilt at 10.5°, so the source range is the only parameter 

to be estimated. Figs. 6-47 and 6-48 present the results. Again, at SNR = 10 dB, 

all the range estimates are around the mainlobe. At SNR = 0 dB, there are 11 es- 

timates at sidelobe points. At SNR = -4 dB, the number of sidelobe points is 36, 

about 25% of the total estimates. We define this SNR as the threshold SNR. At 

SNR = -8 dB, we can still find some information about the source track although the 

sidelobe points dominate the estimation. Compared to Fig. 6-49(a), which gives the 

Ziv-Zakai bound for the same configuration, the threshold SNR is about the same 

(-4 dB versus -5 dB). The two-point error analysis also predicts a threshold SNR 

at -5 dB, as shown in Fig. 6-50(a). For simultaneous range, depth and array tilt 

estimation (Fig. 6-50(b)), the predicted threshold SNR is -3 dB, 2 dB higher than 

the single range estimation case. This also matches the data processing in Figs. 6-43 

through 6-46. Note that for input SNR = -5 dB (-3 dB), the corresponding output 

SNR is 12 dB (14 dB). 

It is interesting to note that although the source track is well followed at high 

SNR, the ambiguity mainlobe is quite wide, in the order of tens of meters, as shown 

in Fig. 6-51.  This suggests that a systematic bias could exist.  When plotting the 
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Figure 6-48: SWellEX-3 source range estimation. The input sensor-averaged SNR is 
(a) -4 dB; (b) -8 dB. 
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Figure 6-49:  Ziv-Zakai bound evaluation for source range estimation:  (a) without 
mismatch; (b) with 1 dB correlation loss caused by mismatch. 
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Figure 6-50: Histogram of threshold SNR for source range estimation predicted at 
individual source/array locations: (a) known source depth and array tilt; (b) unknown 
source depth and array tilt. 

MFP estimates together with the DGPS measurements (Fig. 6-52), we can clearly 

see some offsets between them. The averaged offset is about 80 m. Some possible 

factors contributing to the offset include the DGPS accuracy, offset from the DGPS 

station to the towed source, offset from the DGPS station to the receiver array, and 

source motion. These could account for 30 m to 50 m offset. Another factor is 

the mismatch-introduced bias. Indeed, there is about one dB correlation loss due 

to mismatch as observed in Fig. 6 of Ref. [17]. Given one dB correlation loss, we 

evaluate the MZZB and the predicted bias is about 37 m (cf. Fig. 6-49(b)). 

Overall, the performance predictions give quite good indications of the threshold 

SNR as well as the mismatch-introduced bias in SWellEX-3 data processing. 

6.8    Summary and Discussions 

In this chapter, three Bayesian performance bounds are tested for some typical 

matched-field problems. All three bounds try to capture the ambiguity in param- 

eter estimation but in different ways and thus predict the performance with different 

tightness.   Overall, for most intermediate to high SNR levels, the Ziv-Zakai bound 
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Figure 6-51: Example ambiguity surface:  (a) SNR = 10 dB, peak at the mainlobe; 
(b) SNR = -4 dB, peak at the sidelobe. 
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Figure 6-52: SWellEX-3 source range estimation by DGPS (+) and MLE (*). The 
input sensor-averaged SNR for MLE is 10 dB. 
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gives the best performance predictions. 

For the scalar parameter case, the ZZB is applied to determine the necessary num- 

ber of independent snapshots to achieve the asymptotic performance at a given SNR. 

It is also used to evaluate a popular broadband (multi-tone) processing approach, 

incoherent frequency averaging, which reduces the sidelobe level, but may not dra- 

matically improve the overall performance due to the increased ambiguity baseline. 

For the vector parameter case, we have observed an increased threshold SNR but 

similar asymptotic performance by adding a weakly-coupled parameter, or higher 

asymptotic mean square errors by adding a strongly-coupled parameter. Finally, the 

proposed modified ZZB is tested under different mismatch scenarios. 

Parallel to the development of the performance bound, error analyses using the 

two-point estimation error probability have been developed. This approach is used to 

explain different ambiguity phenomena and thus estimate the threshold SNR in MLE 

simulations. The error analysis results can be summarized by a plot of probabilistic 

square error at each scanning parameter point as a function of SNR and a contour plot 

of threshold SNR predicted within the parameter space. These, combined with the 

parameter coupling plot given by the local Cramer-Rao bound and the contour plot 

of bias predicted by the modified ZZB for given mismatches, provide comprehensive 

images of the field properties. 

One may notice that a slight mismatch could degrade the performance signifi- 

cantly, as shown in Figs. 6-38 and 6-40. Indeed, some robust algorithms have been 

developed. For example, some of the approaches use only a subset of the propagation 

modes, or a subspace of that spanned by the propagation modes. This reduces the 

field sensitivity to some environmental parameter perturbations. Accordingly, we can 

evaluate the bound with the signal field pre-processed in the same way. 

The bound's predictions agree well with the real data processing under optimized 

conditions. This demonstrates the current modeling, including environmental mod- 

eling, sound propagation modeling and statistical modeling, has developed to such a 

level that the optimum theoretical performance can be achieved in a well-controlled 

experiment. 

167 



Chapter 7 

Concluding Remarks 

7.1    Conclusion 

In this thesis, the Bayesian Cramer-Rao bound, Weiss-Weinstein bound and Ziv-Zakai 

bound are introduced for performance analysis in the matched-field problem. Eval- 

uations of the WWB and ZZB are closely related to signal ambiguity function, thus 

making them important tools for analyzing the threshold phenomenon in matched- 

field parameter estimation. It is shown that the Bayesian CRB and WWB may not 

be achievable even at high SNR, depending on how local performances vary across the 

parameter interval. On the contrary, the Ziv-Zakai bound gives the best performance 

prediction for most SNR levels of practical interest. 

Fundamentally, ambiguity properties determine the performance in any parameter 

estimation problem. Some typical ambiguity features include mainlobe and sidelobe. 

The sidelobe error contribution is determined by its level as well as distance from 

the true parameter point, while the mainlobe shape determines the mainlobe error 

contribution, which is large in the presence of mainlobe protrusion. The threshold 

SNR is determined by the relative size of the mainlobe and sidelobe contributions. All 

those can be quantitatively analyzed using the two-point estimation error probability. 

For a source localization problem, the Bayesian performance bound naturally in- 

corporates environmental uncertainty by assuming a random distribution model for 

each uncertain parameter.   Adding a weakly-coupled parameter does not degrade 
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the asymptotic performance but could increase the threshold SNR due to the added 

sidelobe ambiguity; adding a strongly-coupled parameter degrades the asymptotic 

performance due to the added mainlobe ambiguity but the sidelobe threshold may 

not be increased. This can be analyzed based on the one-dimensional projection of a 

multi-dimensional ambiguity function. 

The mismatch problem has also been analyzed using a modified two-point esti- 

mation error probability. This is done by identifying different environmental/system 

parameter sets embedded in the observation and the replica. The mismatched error is 

determined by the level degradation and location shift of the field correlation peak and 

thus two mismatched parameters may behave in a coupled way. The resulting modi- 

fied ZZB well describes the performance in parameter estimation under mismatched 

conditions. Indeed, the size of bias can be estimated by taking the square-root of the 

modified ZZB at high SNR. 

Finally, the developed performance analyses have been verified against simulations 

as well as real data processing. A comprehensive description of the matched-field 

performance is now available by combining the results in this thesis and some previous 

results for asymptotic performance. This can be summarized by three plots. The 

first plot describes the local resolution and coupling across the parameter space in 

the asymptotic region, which characterizes the mainlobe behavior. The second one 

gives the contour of threshold SNR predicted over the parameter space, which is a 

good indication of the sidelobe behavior. The third one provides a contour of bias in 

estimation of one parameter given a set of possible mismatches in other parameters. 

7.2    Summary of Contributions 

1. A two-point estimation error analysis approach has been developed, which 

makes the quantitative probability analysis of matched-field ambiguity possi- 

ble. 

2. Large-error Bayesian performance bounds have been developed for source local- 

ization and estimation of environmental parameters using matched-field meth- 

169 



ods. They give tight and reliable performance predictions in all SNR regions and 

thus provide benchmarks to which various ad hoc algorithms can be compared. 

3. A large-error performance bound is proposed for parameter estimation in the 

presence of environmental/system mismatch. This is the first of its type and can 

be a useful tool for performance analysis in practical sonar/radar applications. 

4. Effects of adding additional parameter (s) are quantitatively investigated in 

terms of the parameter coupling. The results are important for understand- 

ing the performance in a multi-dimensional parameter estimation problem. 

5. Error analysis for binary hypotheses test has been further developed from the 

results in Ref. [72]. This can be applied to general stochastic signal detection 

and estimation problems. 

6. The last one, and maybe the most important one, belongs to many individuals, 

which is demonstrated through this author. Performance predictions are com- 

pared to experimental results and some close consistency is observed, indicating 

that the current theoretical modeling efforts and experimental efforts are well 

united. 

7.3    Future Work 

The computation required is the main concern in applying a global performance bound 

to more complicated multi-dimensional problem. In addition to some optimization 

algorithms, a better understanding and then a better model for the environmental 

effects would be desired. 

Currently, only the effects of white noise are considered. It would be interesting 

to evaluate the performance under correlated noise fields or in the presence of other 

interferences. This can be done by adding each individual contribution to the data 

model. In addition, application to range-dependent environments is a natural step to 

follow. 
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The error analysis in this thesis is developed in the context of the maximum 

likelihood estimate. This approach can be generalized to include other processors, 

for example, the minimum variance distortionless response (MVDR) processor. To 

do so, we need to solve the error probability in a two-point estimation problem using 

MVDR. 

In typical matched-field experiments, the source is often in moving by itself or 

towed by a surface ship. To better predict the performance for such experiments, one 

may want to modify the statistical data model to include the effects of source motion, 

which requires significant extra effort but is practically very important. 
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Appendix A 

Weiss-Weinstein Bound 

Derivations for MFP/MFT 

Calculation of the Weiss-Weinstein bound relies upon evaluating the function fi(s, h). 

ß(s, h) is defined in terms of the probability model by 

/i(s,h) = \nE 
>(R,0 + h) 

,   p(R,0) 
(A.l) 

In this appendix we derive //(s, h) using the multiple-frequency and multiple- 

snapshot data model in Section 3.2.1. The data model assumes zero-mean Gaussian 

distributions for both signal and noise terms, so only the covariance matrix matters. 

Based on the eigen-structure of the covariance matrix, [i(s, h) is further simplified for 

better physical understanding and efficient computation. 

A.l    Derivations of //(s, h) 

First note that 

H(s, h)   =   In I f dO I dRps(R, 0 + hy~s(R, 0) 

=   In [ [ dOps{0 + hy-5(0) I dRp5(R|0 + b.y-s(R|0)   ,    (A.2) 
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where p(0) is the prior pdf of the parameter set, and the conditional pdf is given by 

(cf. Section 3.2.1): 

p{m =  \^ö)\ exp(-RtKR(ö)R) 
1 L     M 

I] I! eXP (-RJ(/m)KR1(/m,ö)R<(/m)) • 

(A.3) 

Recall that L is the number of snapshots and M is the number of frequencies. 

The second integral in (A.2) can then be evaluated by 

/dRps(R|0 + hy-s(R|0) 
Jn 

•(p4)iexp(-R,Ki',(e)R))1"s 

=
 /^RMäTWkK^Fexp(-R,K"(s'e'h'R)>     <A-4> 

where 

K-X(s, 0, h) = sK£{0 + h) + (1 - s)K^(9). (A.5) 

K_1(s, 0, h) is a Hermitian and positive definite matrix for 0 < s < 1 since both 

KR(0) and KR(0 + h) are Hermitian and positive definite matrices. This leads to 

/dRps(R|0 + hy-s(R|0) 

|K(s,0,h)| f 1 _ 
=    |Ka(» + h)NKaW|i-.yn

dR|wK(a>ö,h)|°q,(-RtK"^Ö'h)R) 
|K(S;0,h)| 

|KR(0 + h)|«|KR(0)|i-* 

|KR(0 + h)\'\KK{0)\i-\8K£(0 + h) + (1 - 5)^(0)1- (A-6) 
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Therefore, we obtain for n(s, h) 

fi(s,h)   —   In [LMw, 
ps(0 + h)pl-s(O) 

In 
Je  nm=i V 

(0 + h)\'\KK(OW-\sK£(0 + h) + (1 - 5)^(0)1] 

ps(ö + hy-5(ö) 
L(fm,S,0,h) 

(A.7) 

where T](fm, s, 0, h) is defined by 

r]{fm, s, 0, h) = 

\KR(fm,0 + h)\s\KK(fm,0)\l-s\sK^(fm,0 + h) + (l- s)K^(fm,0)\.(A.8) 

A.2    Derivations of 77(/m, 0, h) 

In evaluation of the WWB, the basic component is T](fm,s,0,h) (cf. (A.7)). As 

discussed in Section 3.2.3, for the zero-mean Gaussian data model typical of the 

matched-field problem, we need to set s to 1/2. Let us denote for s — 1/2 

V(fm,0,h) = 

|KR(/m, 0 + ^T^IKRC/^, ö)!
1
^)!^ . (K^C/^, 6» + h) + K^C/^, Ö))|. (A.9) 

Define the normalized Green's function as 

g(/m,0) 
G(fm,0) 

l|G(/m,0)|| 
(A.10) 

The covariance matrices can then be rewritten by 

KR(/m,0) = a2
b(fm) || G(/m,0) ||2 g{fm,0)gt(fm,0)+o$(fm)\ (A.ll) 
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and 

KR(/m,9 + h) = a2
b(fm) || G(/m,0 + h) ||2 g(/m,0 + h)gt(/m,0 + h) + a2(/m)l. 

(A.12) 

Written in the form of (A.ll) and (A.12), eigenvalues of these two covariance 

matrices are easily solved and given by 

^2(/m)||G(/m,0)||2+a2(/m) 

<*(/m) 

°Ufm) 

(A.13) 

and 

^2(/m)||G(/m,0 + h)||2+a2(/m) 

"Mm) 
}, (A.14) 

respectively. Product of eigenvalues gives the matrix determinant: 

IM/TO,0)| = {aUfm) || G(fm,0) ||2 +a2
n(fm)) ■ a^N^(fm) (A.15) 

and 

|KR(/m,0 + h)| = (a2(/m) || G(/m,0 + h) ||2 +o2
n(fm))-<r%N-V(fm).       (A.16) 

Now let us look at the third term in (A.9): 

1/2 •(Kä^/m.O + ^ + Ki1 (/„,»)) (A.17) 
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Using the Woodbury identity [43], we have 

KR (fm, 0) 
a2

b(fm)\\G(fm,0) 

and 

Then, 

°lUm)   V V2
b(fm)\\G(fm,0)\\l+ol(fm) 

g(fm,0)gHfm,0) 

(A.18) 

K^(fm,e + h) 
°2n(fm) 

<j2b(fm)\\G(fm,e + h)f 
a2

b(fm)\\G(fm,e + h)r+al(fm) g(/m,0 + h)gt(/m,0 + h)). 

(A.19) 

1/2- (K^(fm,e + h) + K^(fm,9)) = 

1      [,     1        al(fm)\\G(fmie)f t 

°lUm) [      2o!(U || G(/m,0) |P +^(/m)gUm'Wjg ^'^ 

1 qb
2(/m)||G(/m,0 + h)||2 ö + hwtff    0 + hl 

2 *?(/».) || G(/m,0 + h) |P +^(/m)g^'y + 11Jg ^^-^^ 
. (A.20) 

In general, for h ^ 0, g(/m, 0) and g(/m, 0 + h) are not co-linear (otherwise they 

are the same vector), and thus the last two terms in (A.20) expand a two-dimensional 

space. Hence, Eq. (A.20) has (N — 2) equal eigenvalues at l/(T^(/m), and for the 

remaining two, the corresponding eigenvectors are linear combinations of g(/m5 0) 

and g(/m, 0 4- h). Denote 

A(fm,0) = 
°2(fm)\\G(fm,0) 

v2(fm)\\G(fm,0)\\*+al(fmy 
(A.21) 

B{fm,e,h) 
O2(fm)\\G(fm,0 + h)f 

a2
b(fm)\\G(fm,e + h)\\^+al(fmy 

(A.22) 
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and 

c(fm, e, h) = gt(/m, ö)g(/m, e + h). (A.23) 

We must have for those two eigenvalues 1 

(i - \Mfm, ö)gt(/m, e) - ißg(/m, e + h)gt(/m, 0 + h)) 

•(g(/m, Ö) + og(/TO, 0 + h)) = A • (g(/m, 0) + ag(/m, 0 + h)),      (A.24) 

which reduces to 

g(/m,0)- 1- A - ^A - a-AC 
2          2 + 

g(/m,0 + h)- (1 - A - iß)a - ißC* 

= 0. (A.25) 

The coefficients of g(/m,0) and g(/m,0 + h) must both be zero.   Setting the 

coefficient of g(/m, 0) to zero yields 

a = 
\-\-\A 

\AC     ■ (A.26) 

Substituting this result into the coefficient of g(/m, 0+h) leads to a quadratic equation 

for 1 - A: 

d-xy-A+B i 
2    (1 - A) + -AAB(l - \Cf) = 0. (A.27) 

Solving this equation gives the solutions for eigenvalues: 

,     ,     A + B     y/(A - B)2 + AAB\C\* 
A — 1 -  ±  . 

4 4 
(A.28) 

Eigenvectors are determined up to a scalar, so only one coefficient, a, is sufficient to describe 
the linear combination. 
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With all the eigenvalues available, we have 

\i/2-(K^(fm,e + h) + K^(fm,e))\= 1 

°lN 

(l _ A + B + y/{A-BY + AAB\C\A 

A + B _ y/(A - B)2 + 4AB|Cp 
4 4 < (A-29) 

Expressing (A.15) and (A.16) using the same notations in (A.21,A.22,A.23), and 

then combining them with (A.29), we finally obtain 

7?(/m,0,h)   = 
y/(l-A){l-B) 

f      A + B     ^{A-B)2 + 4AB\C\2 

A + B      y/{A-B)2 + 4AB\C\i 
4 4 

=      , l -fl-^ + ^d-lCH).   (A.30) 
y/{l-A)(l-B)    V 2 4 7 

A.3    Some Properties of r/(/m, 0, h) 

A.3.1    Proof of r](fm, 6, h) > 1 and Conditions for Equality 

We first notice that \C\2 < 1; thus 

77(/m, 0,h) > 1        =(1 - ^4^)> (A-31) /W ' ~ V(l-^)(l-ß)V 2    " 

where equality holds if and only if |C|2 = 1 (Some trivial cases, A = 0 and/or Z? = 0, 

are ignored, which correspond to the cases with noise only). 

After some obvious algebra, we have 

(1 - ^-^) > 1 (A-32) 
y/(l - A)(l - B) 
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with equality if and only if A = B (excluding the singular case with A = B = 1, 

which correspond to the case with signal only). 

(A.31) and (A.32) complete the proof of rj(fm, 0, h) > 1, and equality holds if and 

only if |Cf = 1 and A = B. 

A.3.2    Approximations for rj(fm, 0, h) 

1) \C\ « 1 

,(/„,*, h) ^(i _ ;)(i _ B). (1 - |- f), (A.33) 

For || G(/m> 6») ||2«|| G(/m, 0 + h) ||2, we have A « 5, and thus ry(/m, 0, h) « 1. 

In this case, only one eigenvalue of (A.17) is distinct from the others. 

2) |C| « 0 

"(/"g-h)WV(l-i)(l-B)-(1-^(1-f)- (A'34) 

At high SNR levels, we have A « £? « 1 and thus 

A2       1 
r}{fm,9,h)ml + — •—-»l. (A.35) 

3) ,4 « B (low noise level or weak parameter-dependence of the norm of the 

Green's function) 

r,(fm,0,h)»~ ((1 - \? ~ ^^) = 1 + \ ^TÄ ■ (1 - Id2).   (A.36) 

When A « 1,7y(/m, 0, h) is extremely sensitive to the variation of \C\. Specifically, 

a small departure from |C| = 1 could result in a significant large 77. In this case, two 

(different) eigenvalues of (A.17) are distinct from the others. 
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A.3.3    A Similar Result for the Minimum Variance Distor- 

tionless Processor (MVDR) 

Consider the single-frequency case. The MVDR output is given by [9]: 

SMVDR(O) = [gt(ö)KR(öT)g(0)]_1, (A.37) 

where 0 is the estimated (scanning) parameter and 6T is the true parameter. 

Following a similar procedure in Appendix A.2, we obtain 

SMVDR(0)   =   -—- „JIIG^)!,« 
v1    <T2IG(0T)II

2
+^I°I ) 

al 

^I|G(0T)II2+ 

1 + ggllG(0T)||2 

n   I + IÜ!°?I>!Ü(I-CT)" 
(A.38) 

where C = gf(ÖT)g(ö). 

Eq. (A.37) is a special form of (20) in Ref. [9] for the case of white background 

noise. As discussed in Ref. [9], this "estimate-subtract" structure from the 1 — \C\2 

term in (A.38) leads to sidelobe cancellation. Specifically, Eq. (A.38) is very sensitive 

to the variation of \C\ at high SNR, and thus \C\ must be very close to unity for the 

ambiguity outputs (SMVDR(&)) to exceed a specified level. 
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Appendix B 

Maximum Likelihood Estimator of 

Source/Environmental Parameters 

Consider the data model in Section 3.2.1. The received signal vector snapshots at 

different frequency bins are aligned to form a column observation vector, R. The 

vector length is N x M x L with N, M and L denoting the numbers of sensors, 

frequencies and snapshots, respectively. Given the source/environmental parameter 

set, 0, the conditional pdf of R is 

1 M     L 
Pim = n^      WK    (f     OWL I! IIeXP {-K-UfXifrn, W/m)) •        (B.l) 

llm=l F^RUm,";!    m=l i=l 

The maximum likelihood estimator (MLE) [43, 72] is obtained by maximizing the 

logarithm of (B.l) with respect to 0. Recall that 

|KR(/m,0)| = (al(U || G(fm,0) ||2 +^(/m)).af-1)(/m)1 (B.2) 

and 

«-iff   a)~      1      (\ ab(fm) || G(/m,0) |[2 a\„\(t   a\\ 
R(k)"^)l °l{fm) || G(/m,0) |P +^(/m)g(/-ö)g  ^^J ' 

(B.3) 
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where g(fm,6) is the normalized Green's function defined in (A.10). The log likeli- 

hood function is then given by 

M 

lnp(R|0)   =   -iVAfLln7r-L^ln(a6
2(/m)||G(/m,0)||2+^(/m)) 

M ML 1 

- (N- l)LX;ina2(/m) - EER!(/-)-F7TT (R4) 
m=l m=l (=1 anUmj 

fl ab(/m)  II G(/m,fl) II „,f      flWt/f      «V\p  ff   ^ 
V      <Wm) II G(/m,0) II2 +a2(/m) / 

We assume known <72(/m) and cr2(/m) and thus maximize (B.4) directly. Rejecting 

constant terms, the maximum likelihood estimate of 0 is given by 

0ML (R) = arg max 
0 

M M 

E Gl(/m, 0) + E ^(/m, 0) • E |R!(/m)g(/m, «) 
.m=l m=l Z=l 

(B.5) 

where 

Qi(/m,0) = -iln K(/m) || G(/m,0) ||2 +olUm)), (B.6) 

Off    /h ^2lUI|G(/m,ö)||2 (     . 
^2Um'   J      ^(/m)(a2(/m) || G(/m,0) ||2 +^(/m))' *   • > 

Note that the norm term plays opposite roles in Qi(fm,6) and Qiifm-iQ)- As 

II G(/m,0) ||2 increases, Qi(/m,0) decreases, while Q2(/m,0) increases. In addition, 

compared to the interference pattern, || G(fm,6) ||2 usually has a much weaker 

dependence on 0, so the 0-dependences of Q\{fm,0) and Q2{fm,Q) can often be 

ignored. Therefore, the MLE of 0 becomes 

M      L 

0ML(R) = argmax>   )jR|(/m)g(/m,0)    . (B.8) 
m=\ 1=1 

Under this approximation, (B.8) is actually independent of of(/m) and o^(fm). 
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Appendix C 

Error Analysis of Random Signal 

Parameter Estimation through 

Binary Hypothesis Test 

A parameter estimation problem can often be transformed to a detection problem. 

For example, for a parameter with M discrete values, one can use an M-ary detection 

scheme to find its estimate. In this appendix, we study the Binary Hypothesis Tests 

for a parameter set with two possible (vector) values. Particularly, we are interested 

in performance associated with the likelihood ratio test, which is often considered 

as the optimum test. The derived optimum error probability plays a center role in 

evaluation of the Ziv-Zakai bound as well as ambiguity analysis. 

To determine the value of 9, we define a binary hypotheses test by 

HQ :      9 = 0O, 

#1 :      9 = 9,. (C.l) 

Given the data model in (3.28) and (3.30), the pdf under the hypothesis H0 is 
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p(R|0o)   = 
1 

|TTKR(0O) 
■expJ-RtK^^R) (C.2) 

L     M 

n:=ikKR(/m,0o)iLf=t^i 
H H exp (-R;(/m)KR

1(/m,0o)R/(/m)) 

Under the hypothesis Hi, it is 

p(R|0i)  =  1^(^)1 exp(~RtK^(gl)R) 

L     M 

(C.3) 

[I I] exp (-BK/n.JK^^.OORjC/m)) 

For this binary hypothesis test problem, the likelihood ratio test states [72]: 

l(R) = In P(R[0I) 

P(R|0O)J 

Hi 

Ho 

(C.4) 

where the minimum probability of error criterion is used. 

Using (C.2), (C.3), (B.2), and (B.3), we have 

M M 

/(R)     =     J^Ql(fm,ei) + Y,Q2(frn,0l)-Yl\Ri(<frn)g(frn,ei) 
m=l m=l 1=1 

M M L 2 

-Y,^(frn,9o)-J2Q2(fm,eo)-Y,\RKfm)s(fm,0o)     ,     (C.5) 
7Tl=l m=l 1=1 

where g(fm,0) is the normalized Green's function, and Qi(fm,0) and Q2(fm,0) are 

defined in (B.6) and (B.7), respectively. 

Ignoring the 0-dependences of Qi(fm,0) and Q2{fm,0), we obtain for the log 

likelihood ratio 

M      L M     L 

'(R) = E E Ri(/™)s(/-0i) - E E RJ(/-)g(/-' öo) 
m=l /=i m=l 1=1 

(C.6) 

Error occurs when Z(R) > 0 given H0 is true or when l(R) < 0 given Hi is true, 
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leading to the following error probabilities: 

pe(o1\eo) = Pv(i(R)>o\e = 0o) (C.7) 

and 

Pe(0o\Oi) = Pv{l(K)<O\0 = e1) (C.8) 

Definitions are symmetrical for these two probabilities, so only the first one is 

derived in the sequel. 

C.l    Case 1: Single-Frequency Component 

This corresponds to the narrowband signal model. For a single-frequency component 

with multiple snapshots, the desired error probability is 

Pe(9i\0o) =Pr   £ k(/o)g(/o,0i) 2 > J2 |R!(/o)g(/o,0o) 
J=i 1=1 

(C.9) 

In this case, some closed-form expressions for Pe(o1|0o) are available. We present 

two approaches to derive Pe(0i\0o). The first one follows that for incoherent diversity 

reception error analysis developed by Lindsey [49]. The second one is proposed by 

Richmond [59]. 

C.l.l    Lindsey's Approach 

We first develop some statistics involved. Define 

yi [gt(/o,Oi)G(/o,Ö0)   £(fo,Oi) 
bi(fo) 

N(/o) 
(CIO) 

and 
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Xl gt(/o,0o)G(/o,0o)   gf(/o,ö0) 
M/o) 

N(/o) 
(an) 

Obviously, both y\ and x,\ are zero-mean complex Gaussian random variables. 

Denote the covariance matrix as follows: 

tf 
V>11     "012 

^lf2     V>22 
= E 

m 
Xl 

y\ xl j 

where 

(C.12) 

</>!! = *»/] =*2(/o)- II G(/o,0o) IP V(/oA)g(/o,0o)l2 + <72(/o),      (C.13) 

V>22 = Efax]] = al(fo)- || G(/o,0o) ||2 +<(/o) (C.14) 

^12 = 4i = E[yix\) = gt(/0l Ö^gC/o, 0O) • K2(/o)- || G(/o, 0O) ||2 +<£(/„)) .  (C.15) 

We also denote the inverse of the covariance matrix as 

$ 
011 012 

012 022 
= *"1. (C.16) 

Obviously, for non-trivial cases, 0n > 0, 022 > 0, and |$| = 0n022 — |0i2|2 > 0. 

Let yi = \yi\ and xi = \xt\, i.e., the amplitude of a complex variable, then the sum 

terms in (C.9) can be represented as 

(C.17) 

(C.18) 

Y = = £*?. 
J—\ 

X  : =£>? 
/=1 
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Since xf,l = 1,...,L, are statistically independent, Chi-squared distributed with 

two degrees of freedom, the characteristic function of X = J2t=i A is tne product 

of the individual ones. Therefore, the pdf of X belongs to the Pearson Type III [3, 

(26.1.31)], viz., 

To find the conditional pdf of Y given X, we first find p(yi\xi) from p(yi,xi) using 

the Bayes rule; then follow a similar procedure for p(X). The resulting p(Y\X) is 

(C.20) 

where h-i(-) is the modified Bessel function of the first kind and order L — \. 

Given p(X) and p(Y\X), the error probability in (C.9) can be expressed as 

/»OO />00 

Pe = Pr(y >X)=        dX- p{X) /    p{Y\X)dY. (C.21) 
Jo Jx 

Substituting (C.20) into (C.21), we have 

/■oo />oo 

Pe   =    /    dX-p{X) /    dY (C.22) 
Jo Jx 

Introducing a change of variable given by z = y/2<j>nY, the second integration is 

actually in the form of the generalization of the Marcum Q-function [37, (2.17, 2.18)]: 

f°°    (x\M-1        (   x2 + a2\ 
QM{a,ß)   =    /    x{-)       expf —\IM_l{ax)dx (C.23) 

=   Q(a,ß) + exp (~^y^) £ {^J^(aß), (C.24) 
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where Q{a,ß) is known as the "Q-function" [37, (F.l, F.2)]: 

Q( <*,ß) = f 
Jß 

a; exp 
x2 + a2" 

I0(ax)dx. (C.25) 

In terms of the generalization of the Marcum Q-function, the error probability is 

poo 
/    dx • p(x) 

Jo 

X    dX 

2[0i2|
2        rrr- — x, \/2(pux 

0n 

+ exp   - 'I* 01 

0 f+^),2)E(S)^(2i^2) .10 
(C.26) 

For the second equality, we have used (C.24) and made a change of variable of x 

VX. Now we define Pe — Pe\ + Pe2, and 

Pel    = 

/oo /      0\J,    12   

dx-p(x) • Q I J      12   x, y/2<l>nx 

n    /.QO 

e2 T f-^V f dx • p(x) • exp /1012F 

V 011 
+ 011      X 

(C.27) 

/n(2|0l2|x
2). 

(C.28) 

el 

To develop Pei, we use the trigonometric form of Q(a, ß) given below [37, (F.19)]: 

a2 + ß2\     f2n        l-fcos0 /   a2 + /52\     /"27r       1- de 
fcosS+(i)j-p(^-^)s- <c-29> 

Then Pel can be derived as follows: 

Pel    = 
'jil i 

—- /   d0- 
l)!7o 

|<ftl2 1-^COS0 
<pll 

./O 

27r.(L-l)!y0    ""    l-2^cosÖ + (J^)2 

dX ■ XL~l ■ exp (-(</>„ + 022 - 2\<f>12\ cos6)X), (C.30) 
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where we have made a change of variable given by X = x2.  Also note that 0n + 

022 - 210i21 cos0 > 0 except for some trivial cases. Thus, the second integration with 

respect to X can be carried out using Euler's integral [3, (6.1.1)]. 

Therefore, we have 

p     =   ±f i*l \L        #i 
27T  V01l(011 + 022)/      0n + |012|2 

2* 1-^COSÖ 

L d6 ' IX _   2l<M0n «w, _    2|fta| aw • (C-31) 

Using a partial fraction expansion of the integrand and rearranging the result, we 

obtain 

Pel = Pell + Pel2, (C.32) 

and 

where 

ell 
l.^L-1     011-I012I2 

2 01X + |012|
2 

1     [2* 1 
'27i0  

d9' (l-Ccosexi-Bcose)1*-^ (a33) 

p _     1      ,L-l     022 - 011 
^12    -    -z • A       ■ 

1 011 + 022 

i  rw i 

^   =   A   (J*\ x  v (C-35) 011 (011 + 022)' 

2[0121 

011 +022' 

2|012|011 

0ii + l0i2|
2' 

_       2[0121 
^   ~   ,A    ,   .   » (C.36) 

011 +022 
_      2|012|0n 
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We now introduce a change of variable given by 

B + cosw ,„ „„. 
cos0 = . (C.38) 

1+Bcoso; 

This transformation maps 0 < 9 < 2-K one-to-one to 0 < u < 2n and its Jacobian 

gives 

d9 = ~ß2  du. (C.39) 
1 + B cos w 

Under this transformation, Pell and Pei2 become 

1    f2* ,     (l + Bcoso;)1-1 

— /    dcj--^ '- , (C.40) 
2ir J0 1 + Ecosw v       ; 

Pel2   =   \. AL-i.%LzhL.(l-&)-»* 
I 011 + 022 

i   r2w 

- /     dw ■ {1+ B cos UJ)
L
'\ (C.41) 

where 

E = ^. (C.42) 

Note that E < 0 and l^l < 1 except for some trivial cases (e.g., perfect correlation 

or zero correlation). Hence, we can expand 1/(1 + Ecosu) using the Fourier series 

representation: 

1 1 ^2{VTzr&-i)n ,„.„. 
 =    , + >   —  '   cos neu. (C.43) 
1 + Ecoso;      y/l-E2     ^     EnVl - E2 

Y
 71 = 1 

The coefficients of the series are solved using the integral formula in [35, page 112, 

(24)]. 

Based on this series representation and the results in [35, page 115, (35a)], Peii is 
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solved by 

Pell 
1 AL-1     011 ~ Itf 
2 fa + |0i2|

2 (1-52) 2\-i+i 1 
1-BC 

E 'L - 1\ (L - 1 - mN 

Vi-£2 ^ v TO v
 m=0 

m 
'5' 2m 

+ 

n=l v v     /        m=0 

Similarly, Pel2 is solved as follows: 

'L-Y\fL-l-m> 
.   m   ) V    n + m 

B 2m 

(C.44) 

el2 
1 _ ^L-i _ 022 ~ 011     ^ _ ß2\-£+£ 

E 
m=0 

011 + 022 

L-l\/L-l-m\ {B^2m 

m m 
(C.45) 

e2 

Making a change of variable of X = x2 in (C.28) and rearranging the result, we obtain 

Pf e2 

l$l\L       1      L_1 (6    \n  f°° 
^)   ^i)fE(]£iJ   y0   ^•^-1exp(-(011+022)X).7n(2^12|X). 

(C.46) 

Note that for non-trivial cases, <f>n + 4>22 > 2|0i2| > 0. Hence, Pe2 can be further 

developed using the result in [75, page 385, (3)], [76, (4.2-17)] and [35, page 115, 

(35a)]. Finally we obtain for Pe2 

e2 
AL (1 - B2)-L+1* y(L + n-l\ /     <f>n     \ 

V } ^V      n       A0H + 022/ 
rL-i- 

1      'AVi-A/L-l-mUßV™ 
(C.47) 
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Summary 

In summary, the error probability in (C.9) is the sum of PeU: Pe\2 and Pe2. Combining 

(C.44), (C.45) and (C.47) gives the following result: 

A L-\ 

l-B2 
1 /,        022 ~ 011  _ 1 

2 '  V 011 + 022  ' ,/T^W. 

\^\ (L - 1\ (L - 1 - m\ (& 2m 

m E 
m=0   x 

+grrvr?-i-gy+ 
71=1 

rX.-1-ni 

0 A 

E 
 rr1) 

,011 + 022)        y/Y^B1        (L~l) 

E 
m=0 

Z, - 1\ (L - 1 - m\ (B 
m   ) \    n + m    / \2 

2m 

(C.48) 

Note that any sum equals to zero if the lower limit exceeds the upper limit. 

C.1.2    Richmond's Approach 

Lindsey's approach is quite straightforward, but not practical for more complicated 

problems, like the multiple-frequency problem.   Richmond proposed a Chi-squared 

analysis method [59], which leads to simple derivations. 

We now denote data matrix of snapshots by 

R Ri(/o)  R2(/o)   -  RL(/O) (C.49) 

where L snapshots are independent, identically distributed according to a complex 

Gaussian distribution. 

Then the error probability in (C.9) can be written as 

Pe(9i\0o)   =   Pr(gt(/o,ö1)RRtg(/o,Ö1)>gt(/o,öo)RRtg(/o,Ö0)) (C.50) 

=   Pr (Tr [RRtgC/oAteUA)] > Tr [RRtg(/0> öo)gf(/o,ö0)]) 

=   Pr(Tr[RRt(g(/o,01)g
t(/o,öi)-g(/o,Öo)gt(/o,öo))] > 0). 
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We express each Rj as (recall that we are assuming 0 = 0O) 

R^K^Cfcflo)^. (C.51) 

This is actually a whitening operation so that each new snapshot, Zj, is complex 

Gaussian with identity covariance matrix. Hence, Pe(01\0o) can be expressed in 

terms of Z = [Zx, ..., ZL]: 

Pe(0i|*o)   =   Pr (Tr [K^ZZtK^^gl/o^Og^/o^O-gao, 0o)gf(/o,0O))] > o) 

=   Pr (Tr [ZZ^
2
 (g(/0, O^ifo, 01) - g(/0,00)8^/0, *o)) Kf] > o) . 

(C.52) 

Note that the above expression is available even for L < N, i.e., the number of 

snapshots is smaller than the number of sensors. 

Denote by matrix eigen-decomposition 

Kk/2 (g(/o, 0i)gf(/o, *i) - g(/o, 00)g\f0,0O)) Kj/2 = U*AU, (C.53) 

where U+U = UUf = I, and A = diag(A1; A2, 0, ..., 0). 

Since U is a unitary matrix, multiplying Z by U doesn't alter the covariance and 

then the distribution for Gaussian model [64]. It follows that 

UZ   =   Z, • (C.54) 

UZZfU   =   ZZt. (C.55) 

Therefore, the error probability can be further derived as 

Pe(Oi\0o)   =   Pr (Tr [ZZWAU] > 0) 

=   Pr (Tr [UZZWA] > 0) 

=   Pr (Tr [ZZ*A] > 0) . (C.56) 
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Expanding Tr[ZZ^A] explicitly, one can easily find it is a weighted sum of two 

independent degree-L complex Chi-squared variables. Thus we have 

Pe(0i|0o)     =    Pr (Al • X?,L + A2 • XI,L > 0) 

Xl,L        _Ai 

XU'    A = Pr I ^ ^-711 • (C-57) 

Note that a positive A2 is required in deriving (C.57). 
x2 

The statistics of the complex F-distribution, Fni n2 = -f1, is well documented in 

Refs. [44] and [61, Appendix A]. Its cumulative distribution function is given by 

Pr(f < x) = f V ("> +"* " * W. (C.58) 

Using (C.58), we finally obtain 

Solutions to eigenvalues 

We first notice for any nonsingular matrix K and an arbitrary matrix V, 

{Xi : K^VK1'2} = {A* : VK}. (C.60) 

This can be easily proved as follows: 

IK^VK^-AI^O 

<=^|K1/2||VK1/2_AK-1/2| = 0 

^>|VK1/2-AK-1/2||K1/2| = 0 

<=> |VK - Al| = 0. (C.61) 

Hence, if we denote 
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Si = Kjf (g(/o, öiJgU/o, Öi) - g(/o, Öo)gf(/o, Ö0)) Kf, (C.62) 

S2 = (g(/o, 0i)gf(/o, Öi) - g(/o, öo)gf(/o, öo)) KR, (C.63) 

then Si and S2 share the same eigenvalues. 

We know 

S2   =   (g(/o,ö1)gt(/o,e1)-g(/0>öo)gt(/o,Oo))- 

(a6
2(/0)G(/o,Öo)Gt(/0,ö) + ^(/o)) 

=   *?(/<>) II G(/0> 0o) ||2 gf(/o, Öi)g(/o, Öo) • g(/o, 0i)gHfo, 00) 

+ <£(/o)-g(/oA)gt(/o,*i) 

- W(/o) II G(/o,0o) II2 +a2(/o)) • g(/o,OofcHfo,0o). (C.64) 

Obviously, S2 is a rank-two matrix, and the eigenvectors corresponding to two non- 

zero eigenvalues must be linear combinations of g(/0,00) and g(/0,0i). Thus 

S2 (g(/o, öo) + cg(/0,0,)) = A (g(/0,0O) + cg(/0,0!)) 

g(/o, öi) • [al(fo) || G(/0,0o) ||2 gttfo, Öi)g(/o, Öo) 

• (1 + cgt(/0j 0o)g(/o, öi)) + al(fo) (gt(/0, ö^g^, 0O) + c) - Ac] 

g(/o, öo) • [(c72(/o) || G(/0,0O) ||2 +a2(/0)) (l + cgt(/0, 0o)g(/o, *)) + A] 

= 0. (C.65) 

The coefficients of g(/0,0O) and g(/0,0i) must both be zero. The value of c that 

makes the coefficient of g(/0,0$) zero is 

C= ~gt(/o,öo)g(/o,0i) U2(/o) II G(/o,0o) II2 +^2(/o) +1j • (C66) 
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Substitution of the above c into the coefficient of g(/o,0i) yields a quadratic 

equation of A: 

A2 + A • a2(/0) || G(/0,00) ||2 (l - |g+(/o, 0i)g(/o, 9o)\2) 

- ^(/o) W(/o) II G(/o,0o) II2 +<£(/o)) (1 - \t?{fo,Oi)E{fo,0Q)\
2) = 0. 

(C.67) 

The solution is 

A(/o,0o,#i) — Ö -°l(fo) II G(/O,0o) II2 (i - IgUAM/oA)!2) T VD 

(C.68) 

where 

£(/o,0o,0i)   =   W(/o) II G(/o,0o) ||2 (1 - IgUAteCfoA)!2) +2a2(/0))
2 

-4^(/o)|gt(/oA)g(/o,0o)|2. (C69) 

C.2    Case 2: Multiple-Frequency Component 

The log likelihood ratio for multiple-frequency component in (C.6) can be rewritten 

as 

M 

J(R) = £rr 
m=\ 

^R/(/m)Rj(/m)'B, 
,1=1 

(C.70) 

where 

Bm = g(/m, Ölfilm, öl) - g(/m, öo)gt(/ro, öo). (C.71) 

Similar to the single-frequency case, we denote data matrix of snapshots by 

R(/m)= R-l(/m)     R-2(/m)     •■•     RlX/m) (C.72) 
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and express R(/m) as 

R(/m) = K{l
/2(/m,öo)Zm (C.73) 

so that each snapshot of data matrix Zm is complex Gaussian with identity covariance 

matrix. 

The log likelihood ratio can then be expressed in terms of Zm: 

M 

f(R) - ETr[R(/-)Rt(/-)BJ 
m=l 

M 

= ETr[KR2(/-)z-4Kk/2(/m)Bm] 
m=l 

M 

m=\ 

(C.74) 

Using the matrix eigen-decomposition 

Kk/2(/m)BmK^/2(/ro) = UUmUm, (C.75) 

where Um is a unitary matrix, and Am = diag(Alm, A2m, 0, ..., 0), we then have 

M 

J(R) = J2Tr [ZmZLuLAmum] 
m=l 

M 

=     E Tr [Um^ZJ^UUm] ■ (C.76) 
m=\ 

Note that (C.68, C.69) can be used to solve for the eigenvalues at each frequency. 

Given the equality in distribution, 

UmZmZlUl = ZmZL (C.77) 

it follows that 
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M 

Pe{Ox\eQ)   =   Pr   J]Tr[UmZmZLuUJ >0 
\m=l 
/ M N 

=   Pr    £ Tr [ZmZlKn] > 0 

=   Pr (£; (Alm • XL,L + A*» ■ XL,L) > 0 ) . (C78) 
\m=l 

Now we define 

M 

I' = £ (Al- • ^ + A2- * X^) (C-79) 

so that Pe(0i|0o) = Pr(/' > 0). To find the pdf of /', we first observe that each 

Chi-squared variable is independent of the others, so the moment generating function 

is easily solved: 

M 

$,,(s)   =   E [exp(sZ')] = E[ ^ texp (sAlm ' X*™,L)} ■ E [exP (sX*™ • xL,z,)] 

M 1 1 

= Ff -  . (c.80) 
m=\ v 

An interesting point is that (C.80) can also be derived using some properties of 

the covariance matrix distribution [4]. Let us reconsider the log likelihood ratio in 

(C.70). Since Ri(/m),-,Ri.(/m), are independently distributed, each according to 

zero-mean Gaussian with covariance matrix, KR(/m), the sample covariance matrix 

Am = ^>,(/m)Rj(/J (C81) 
i=i 

is distributed according to the Wishart distribution, H/(KR(/m), L - 1). Despite the 

complicated pdf, the Wishart distribution has a simple form for its moment generating 

function, that is 
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£[exp(rr[AmE]] = |l-EKR(/m)| (C.82) 

Using this property, the moment generating function of Z(R) can be directly solved 

from (C.70) as follows: 

$j(R)(s)   =   E[exp(sl(R))] = E[exp(sl(Am,m = l,...,M))] 
M 

E 

E 

M 

exp I s J2 Tr[AmBm] 
\   m=\ 
(M 

^Tr[AmsBm] 
m=l 

=   l[E[exp(Tr[AmsBm})} 
m=\ 

M 

M 

=     YLiil-sXirJil-sX^)] (C.83) 
771=1 

The fifth equality comes from the independence of Am, m = 1,...,M. The sixth 

equality follows the approach leading to (C.82). The seventh equality is because 

BmKR.(/m) has only two non-zero eigenvalues at frequency fm. 

Note that even though for L < N, Am does not have a density, its distribution 

and the moment generating function are well defined. Accordingly, the derivations in 

(C.83) still hold for L < N. 

Having obtained the moment generating function, we can either derive the ex- 

act form of the desired error probability or develop some approximations for rapid 

computation. 

C.2.1    Exact Error Probability 

We first rewrite (C.80) as 
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Ms)=n 
M     /        1 

m=l 

1 

 i_ 
A2n 

(C.84) 

{Aim, A2m}, m—1,..., M, are solved by (C.68, C.69). Clearly (see also (C.57)), 

Aim   <   0, 

<^2m    >    0, 

|A2m I     <     I Air (C.85) 

Note that s is a real variable, and the region of convergence [55] for 3v (s) is given by 

1 
< s < 

1 
min(Aim, m=l,...,M) max(A2m, m = l,...,M)' 

$i>(s) has a partial-fraction expansion of the form [60]: 

(C.86) 

M     L 

•r(«) = EE 
m=l fc=l 

Cmk+ Cmk- 
1_U 

V A2m ' V A]m / 

(C.87) 

where 

CmJfc+ — (L-*)! 

gL-k 

ßsL-k \ A2m/ 
$,,) 

S=l/>2n 

(C.88) 

Cmk- — (L-fc)! Ö^-fc   \{S       AimJ $V) 
s=l/Ai„ 

(C.89) 

Note that for y = A • xl and A > 0, 

yk-le-y/\ 
p{y) = TTT^——  <—>  $ 

A*(fc-1)! 

^     '    (Jfc-1)! 
(C.90) 
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and for y = A • x\ and A < 0, 

k-le-y/X /      k      \k 

Xk(k-1)\ yK'     \l-s 

{-y)k-le~y/x (    1 k 

(i-l),        ~   {JZJ)   ■ (CM) 

Therefore the pdf of I' is given by 

M     L       n 

*(0 = E£Ä(-i)fc^-r/A2m> 
for  l'>0, 

M     L      r 

= EETFTV«-'')1-^'-, 

for  l'<0. (C.92) 

Finally, the error probability is 

poo 

Pe{0i\00)   =    /    p(l')dl' 
Jo 

=   £Enr1v(-l)fe/   ^e-'^dl' 
M     L 

=   ££CW(-A2m)fc. (C93) 
m=l fc=l 

C.2.2    Approximation to Error Probability 

The error probability in (C.93) has a nice closed-form expression, but to evaluate 

it, one has to find the partial-fraction expansion coefficients, which is often time- 

consuming particularly for large M and L. In fact, people have developed some 

approximations for some similar error analysis problems, which we would like to 

apply to the problem here. 

A typical approach is based on the moment generating function as developed 

in Refs. [24, 73]. The pdf of the log likelihood ratio is expressed in terms of the 

Edgeworth series with first term being Gaussian, so a hierarchy of approximations 
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is obtained by retaining lower to higher-order terms. All of the coefficients of this 

series can be expressed in terms of a so-called semi-invariant function, /i(s), and its 

derivatives, //(s) is just the logarithm of the moment generating function. Originally, 

it is derived using a "tilted density" for optimum likelihood ratio test: the original 

density is transformed so that the log likelihood ratio is nearly Gaussian. Later /i(s) 

is generalized to some sub-optimum test [5] so that this approximation approach can 

be applied to describe any random variable whose moment generating function is 

available. 

For the problem here, ^(s) is defined by 

fi(s)   =   ln$j(s) 
M 

=   -L^ln[(l-sAlm)(l-sA2m)], (C.94) 
771=1 

and we have some nice forms for its derivatives: 

M 

fi{s) = i£ 
771=1 

M 

= ^£ 

Air + A 2m 

771 = 1 

1 — sAim 1 — SÄ2m 

\ 2 A lm 

1 -sAlr 

M 

/*<*>(*)    =    (*-l)!L£ 
771=1 

+ 

Air 

A 2m 

1 - sA2m 

1 — sAlr 
+ A 2m 

1 - sA2m 

(C.95) 

(C.96) 

(C.97) 

The error probability, Pe(0i\0o) = Pr(Z > 0), can then be expressed in terms 

of fi(s) and its derivatives. Detailed derivations are given in Ref. [73] and only the 

related approximations are stated here. 

First, s is solved by letting ß(s) = 0, that is 

M      r 

E 
771=1 

Air 

1 - sAlr 
+ A 2m 

1 - sA2m 

0. (C.98) 

Except for some extremely simple cases (say, M = 1), the above equation is solved 

numerically. Note that there are 2M — 1 roots and 2M poles. When s approaches a 
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pole from the negative side (i.e., s is smaller), the function in (C.98) goes to infinity; 

when s approaches a pole from the positive side, this function goes to minus-infinity. 

Hence, between any two adjacent poles, the left-hand-side of (C.98) changes its sign 

once and only once, and there is a zero within each of 2M — 1 such sub-intervals. To 

satisfy the convergence condition in (C.86), only the zero falling between 

(C.99) 
min(Aim m — 1,..., M) 

and 

max(A2m m- 1,...,M) 
(C.100) 

is the desired solution. We denote this solution as sm. 

The first term in the series is given by 

Pe
[1](0i\0o) = exp ^(sm) + Slt^j erfc (SfnV^W) > (C.101) 

where erfc(-) is the complement error function defined by 

erfc(x) =  /    -p=exp (-y j dx. (C.102) 

The second term in the approximation is given by 

p[2],fl|0N_      gm/*(3)(Sm)p [11/fl  |p x    ,    l-S2
mtl(Sm)    fl& (sm)     ,..,,    ^ 

(C.103) 

Note that the log likelihood ratio is often a sum of many independent random 

variables. In this case, the first-order approximation is good enough. 

Finally we should point out that for the case with coherent broadband signal, as 

long as the frequency coherence is available, the above approach can still be applied to 

obtain the likelihood function statistics and then the related performance measures. 
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Appendix D 

Issues on Signal-to-Noise Ratio 

Consider the passive source localization problem. According to the passive sonar 

equation [74], the signal-to-noise ratio at each sensor is given by 

SNR = SL - TL - NL, (D.l) 

where 

SL is the Source Level, in dB re 1 //Pa at 1 m; 

TL is the Transmission Loss, in dB re at 1 m; and 

NL is the Noise Level, in dB re 1 //Pa. 

It is often measured on a per-Hertz basis. For example, typical shallow water noise 

spectrum level ranges from 70 to 90 dB re 1 //Pa per Hertz; for the sound propagation 

to about 4 kilometers, the transmission loss is about 60 dB re at 1 m; thus, for a source 

spectrum level of 140 dB re 1 //Pa per Hertz at 1 m, the SNR varies from -10 to 10 

dB. 

In the context of this thesis, we need to specify the signal term and the noise term 

for a given SNR. Note that 

SL = 171 + 101og10Ps, (D.2) 
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and 

NL = 171 + 101og10P„, (D.3) 

where Ps and Pn, both measured in watts, denote the signal power and the noise 

power, respectively. For a stationary random source process, the ratio of the signal 

power and the noise power in the same frequency band is concerned [74], and the 

signal power is given by 

Ps = [   Sb(f)df « Sb(f) ■ A/, (D.4) 
JAf 

where A/ (in Hertz) is the effective bandwidth of the source process, and the ap- 

proximation is due to the narrowband assumption. Thus, the signal power spectral 

density (in watt per Hertz) can be approximated by 

10(SL-171)/10 

Sb(f) « ^ • (D.5) 

The noise power spectral density (in watt per Hertz) is approximated in the same 

way: 

i n(NL-i7i)/io      i n(SL-TL-SNR-171)/10 

Sn(f) -        A/        = ~ ^ , (D.6) 

where the sonar equation in (D.l) is used. Combining (D.5) and (D.6), we have 

Sn(f) 
sb(f) 

= io-TL-SNR/10. (D.7) 

In this thesis, to simplify the calculation, we set Sb(f) = 1, and then solve Sn(f) using 

(D.7) for a chosen set of SNR's. The covariance matrix in (3.29) is then available. 

For the continuous tone radiation, the ratio of the signal energy in receiver band 

and the noise power in 1-Hz band is concerned [74]. A/ is now determined from the 

FFT duration as well as the window function applied, but some similar expression in 

(D.7) connecting the signal level and the noise level is again available. 
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The SNR defined in (D.l) is the input, sensor-averaged SNR. The transmission 

loss is the mean across the sensor array, i.e., 

TL = 10IOg-°||G(/j)||ViV- (D'8) 

where N is the sensor number. For multiple tone signals, the transmission loss varies 

from frequency to frequency, but this variation is small for typical frequency band 

used. Instead of computing Sn(f) for each tone, we compute an (incoherently) aver- 

aged transmission loss across frequencies (as well as sensors), and then use one Sn(f) 

for all frequency components. This is consistent with the definition in SWellEX exper- 

imental data processing [17], which computes the input SNR using individual FFT 

bins for both signal plus noise and noise and then averages across frequencies and 

sensors. Similarly, for a discrete set of parameters, the transmission loss is further 

(incoherently) averaged across the parameter interval. 

To evaluate the output SNR, we need to include the array gain, which is 

AG = 101og107V. (D.9) 

For most examples in this thesis, N = 16, and thus AG « 12 dB. If we use multiple 

(M) independent frequencies or (L) snapshots, we need to add another 5 log10 M or 

51og10 L dB to the output SNR for typical input SNR levels [74]. For example, given 

that we have 16 sensors and 10 snapshots centered at a single frequency, for an input 

SNR of 0 dB, the output SNR is about (12 + 5 =) 17 dB. 

206 



Bibliography 

[1] C. K. Abbey and J. L. Denny. The Barankin bound: instability in certain 

estimation problems. SPIE, 2708:53-60, 1996. 

[2] J. S. Abel. A bound on mean-square-estimate error. IEEE Trans. Information 

Theory, pages 1675-1680, May 1993. 

[3] M. Abramowitz and I. E. Stegun. Handbook of Mathematical Functions. National 

Bureau of Standards, Washington, 1972. 

[4] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John 

Wiley & Sons, New York, 1984. 

[5] A. B. Baggeroer. Confidence interval determination for spectral estimates using 

"tilted densities". In Proc. ICASSP 83, pages 1454-1457, Boston, 1983. 

[6] A. B. Baggeroer. Matched field processing: status at 2000 and where to now. In 

IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, 

2000. 

[7] A. B. Baggeroer and H. Cox. Passive sonar limits upon nulling multiple mov- 

ing ships with large aperture arrays. In Conference Record of the Thirty-Third 

Asilomar Conference on Signals, Systems, and Computers, pages 103-108, 1999. 

[8] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky. An overview of 

matched field methods in ocean acoustics. IEEE J. Oceanic Engineering, 18:401-- 

424, October 1993. 

207 



[9] A. B. Baggeroer, W. A. Kuperman, and H. Schmidt. Matched field process- 

ing: Source localization in correlated noise as an optimum parameter estimation 

problem. J. Acoust. Soc. Amer., 83:571-587, February 1988. 

[10] A. B. Baggeroer and H. Schmidt. Parameter estimation theory bounds and 

the accuracy of full field inversions. Full Field Inversion Methods in Ocean and 

Seismo-Acoustics, pages 79-84, 1995. 

[11] E. W. Barankin. Locally best unbiased estimators. Annals of Mathematical 

Statistics, 20:477-501, 1949. 

[12] P. A. Baxley, N. 0. Booth, and W. S. Hodgkiss. Matched-field replica model 

optimization and bottom property inversion in shallow water. J. Acoust. Soc. 

Amer., 107:1301-1323, March 2000. 

[13] K. L. Bell. Performance Bounds in Parameter Estimation with Application to 

Bearing Estimation. PhD thesis, George Mason University, Fairfax, VA, 1995. 

[14] K. L. Bell, Y. Ephraim, and H. L. Van Trees. Explicit Ziv-Zakai lower bound 

for bearing estimation. IEEE Trans. Signal Processing, 44:2810-2824, November 

1996. 

[15] K. L. Bell, Y. Steinberg, Y. Ephraim, and H. L. Van Trees. Extended Ziv-Zakai 

lower bound for vector parameter estimation. IEEE Trans. Information Theory, 

43:624-637, March 1997. 

[16] S. Bellini and G. Tartara. Bounds on error in signal parameter estimation. IEEE 

Trans. Communication, 22:340-342, March 1974. 

[17] N. O. Booth, P. A. Baxley, J. A. Rice, P. W. Schey, W. S. Hodgkiss, G. L. 

D'Spain, and J. J. Murray. Source localization with broad-band matched-field 

processing in shallow water. IEEE J. Oceanic Engineering, 21:402-412, October 

1996. 

208 



[18] V. V. Borodin and G. R. Minasian. Statistical approach to ocean acoustic to- 

mography, Cramer-Rao bounds for accuracy of sound-speed field reconstruction. 

Full Field Inversion Methods in Ocean and Seismo-Acoustics, pages 91-95, 1995. 

[19] V. V. Borodin and G. R. Minasian. Statistical formulation of ray, interference 

and mode acoustic tomography and its potential accuracy evaluation. Full Field 

Inversion Methods in Ocean and Seismo-Acoustics, pages 97-101, 1995. 

[20] L. M. Brekhovskikh. Waves in Layered Media. Academic Press, New York, 1980. 

[21] D. G. Chapman. Minimum variance estimation without regularity assumptions. 

Annals of Mathematical Statistics, 22:581-586, 1951. 

[22] D. Chazan, M. Zakai, and J. Ziv. Improved lower bounds on signal parameter 

estimation. IEEE Trans. Information Theory, 21:90-93, January 1975. 

[23] E. K.R Chong and S. H. Zak. An Introduction to Optimization. New York: 

Wiley, 1996. 

[24] L. D. Collins. Asymptotic Approximation to the Error Probability for Detecting 

Gaussian Signals. Sc.D. dissertation, Massachusetts Institute of Technology, 

Cambridge, MA, 1968. 

[25] M. D. Collins. User's Guide for RAM Version 1.0 and l.Op. Naval Research 

Laboratory, Washington, DC, 1998. 

[26] M. D. Collins, W. A. Kuperman, and H. Schmidt. Nonlinear inversion for ocean- 

bottom properties. J. Acoust. Soc. Amer., 92:2770-2783, November 1992. 

[27] P. M. Daly. Cramer-rao bounds for matched field tomography and ocean acoustic 

tomography. Master's thesis, Massachusetts Institute of Technology, Cambridge, 

MA, 1997. 

[28] P. M. Daly. Stochastic Matched Field Processing for Localization and Nulling 

of Acoustic Sources. Sc.D. dissertation, Massachusetts Institute of Technology, 

Cambridge, MA, 2000. 

209 



[29] D. F. DeLong. Use of the Weiss-Weinstein bound to compare the direction- 

finding performance of sparse arrays. Technical Report 982, MIT Lincoln Labo- 

ratory, Lexington, MA, 1993. 

[30] G. L. D'Spain, J. J. Murray, W. S. Hodgkiss, N. O. Booth, and P. W. Schey. Mi- 

rages in shallow water matched field processing. J. Acoust. Soc. Amer., 105:3245- 

3265, June 1999. 

[31] C. Feuillade, D. R. Del Balzo, and M. M. Rowe. Environmental mismatch in 

shallow-water matched-field processing: Geoacoustic parameter variability. J. 

Acoust Soc. Amer., 85:2354-2364, June 1989. 

[32] G. V. Frisk. Ocean and Seabed Acoustics. Prentice Hall, Englewood Cliffs, New 

Jersey, 1994. 

[33] P. Gerstoft. Inversion of seismoacoustic data using genetic algorithms and a 

posteriori probability distributions. J. Acoust. Soc. Amer., 95:770-782, February 

1994. 

[34] D. F. Gingras. Methods for predicting the sensitivity of matched-field processors 

to mismatch. J. Acoust. Soc. Amer., 86:1940-1949, November 1989. 

[35] W. Grobner and N. Hofreiter. Integraltafel: Part II. Springer-Verlag, Vienna, 

Austria, 1958. 

[36] E. L. Hamilton. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Amer., 

68:1313-1340, November 1980. 

[37] C. W. Helstrom. Statistical Theory of Signal Detection. Pergamon Press Ltd., 

Oxford, England, 1968. 

[38] J. Herman, R. Kucera, and J. Simsa. Equations and Inequalities. Springer-Verlag, 

New York, 2000. 

[39] J. P. Ianniello. Recent developments in sonar signal processing. IEEE Signal 

Processing Magazine, 15:27-40, July 1998. 

210 



[40] I. A. Ibragimov and R. Z. Has'minskii. Statistical Estimation: Asymptotic The- 

ory. Springier-Verlag, New York, 1981. 

[41] F. B. Jensen and M. C. Ferla. SNAP: The SACLANTCEN Normal-Mode Acous- 

tic Propagation Model. SACLANT ASW Research Center, La Spezia, Italy, 1979. 

[42] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt. Computational 

Ocean Acoustics. American Institute of Physics Press, New York, 1994. 

[43] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. 

PTR Prentice Hall, Englewood Cliffs, NJ, 1993. 

[44] E. J. Kelly and K. Forsythe. Adaptive detection and parameter estimation for 

multidimensional signal models. Technical Report 848, MIT Lincoln Laboratory, 

Lexington, MA, 1989. 

[45] R. T. Kessel. A mode-based measure of field sensitivity to geoacoustic parameters 

in weakly range-dependent environments. J. Acoust. Soc. Amer., 105:122-129, 

January 1999. 

[46] J. L. Krolik. Matched-field minimum variance beamforming in a random ocean 

channel. J. Acoust. Soc. Amer., 92:1408-1419, September 1992. 

[47] J. L. Krolik and S. Narasimhan. Performance bounds on acoustic thermometry 

of ocean climate in the presence of mesoscale sound-speed variability. J. Acoust. 

Soc. Amer., 99:254-265, January 1996. 

[48] E. L. Lehmann. Theory of Point Estimation. Springier-Verlag, New York, 1983. 

[49] W. C. Lindsey. Error probability for incoherent diversity reception. IEEE Trans. 

Information Theory, pages 491-499, October 1965. 

[50] N. C. Makris. Parameter resolution bounds that depend on sample size. J. 

Acoust. Soc. Amer., 99:2851-2861, May 1996. 

[51] Z.-H. Michalopoulou and M. B. Porter. Matched-field processing for broad-band 

source localization. IEEE J. Oceanic Engineering, 21:384-392, October 1996. 

211 



[52] W. Munk, P. Worcester, and C. Wunsch. Ocean Acoustic Tomography. Cam- 

bridge University, Cambridge, England, 1995. 

[53] E. Naftali and N. C. Makris. Necessary conditions for a maximum likelihood 

estimate to become asymptotically unbiased and attain the Cramer-Rao lower 

bound, Part I: General approach with an application to time-delay and Doppler 

shift estimation. J. Acoust. Soc. Amer., 2001. In press. 

[54] S. Narasimhan and J. L. Krolik. Fundamental limits on acoustic source range 

estimation performance in uncertain ocean channels. J. Acoust. Soc. Amer., 

97:215-226, January 1995. 

[55] A. V. Oppenheim and A. S. Willsky. Signals and Systems. Prentice Hall, Upper 

Saddle River, New Jersey, 1997. 

[56] M. B. Porter. The KRAKEN Normal Mode Program. Naval Research Laboratory, 

Washington, DC, 1992. 

[57] S. D. Rajan, J. F. Lynch, and G. V. Frisk. Perturbative inversion methods 

for obtaining bottom geoacoustic parameters in shallow water. J. Acoust. Soc. 

Amer., 82:998-1017, September 1987. 

[58] J. Rice and J. Determan. SWellEX-3 Data Report. NCCOSC RDT&E Division, 

Code 541, 1995. 

[59] Christ D. Richmond. Personal Communications. 

[60] Christ D. Richmond. Performance of a class of adaptive detection algorithms in 

nonhomogeneous environments. IEEE Trans. Signal Processing, 48:1248-1262, 

May 1995. 

[61] Christ D. Richmond. Performance of the adaptive sidelobe blanker detec- 

tion algorithms in homogeneous environments. IEEE Trans. Signal Processing, 

48:1235-1247, May 1995. 

212 



[62] H. Schmidt. OASES Version 2.1 User Guide and Reference Manual. MIT Ocean 

Acoustics Laboratory, Cambridge, MA, 1999. 

[63] H. Schmidt and A. B. Baggeroer. Physics-imposed resolution and robustness 

issues in seismo-acoustic parameter inversion. Full Field Inversion Methods in 

Ocean and Seismo-Acoustics, pages 85-90, 1995. 

[64] Allan Steinhardt. Adaptive multisensor detection. In Simon Haykin and Allan 

Steinhardt, editors, Adaptive Radar Detection and Estimation, chapter 3, pages 

126-137. John Wiley & Sons, New York, 1992. 

[65] J. Tabrikian, G. S. Fostick, and H. Messer. Detection of environmental mismatch 

in a shallow water waveguide. IEEE Trans. Signal Processing, 47:2181-2190, 

August 1999. 

[66] J. Tabrikian and J. L. Krolik. Barankin bounds for source localization in an 

uncertain ocean environment. IEEE Trans. Signal Processing, 47:2917-2927, 

November 1999. 

[67] J. Tabrikian, J. L. Krolik, and H. Messer. Robust maximum-likelihood source 

localization in an uncertain shallow-water waveguide. J. Acoust. Soc. Amer., 

101:241-249, January 1997. 

[68] A. M. Thode, W. A. Kuperman, G. L. D'Spain, and W. S. Hodgkiss. Localization 

using Bartlett matched-field processor sidelobes. J. Acoust. Soc. Amer., 107:278- 

286, January 2000. 

[69] A. M. Thode, E. Naftali, I. Ingram, P. Ratilal, and N. C. Makris. Necessary 

conditions for a maximum likelihood estimate to become asymptotically unbiased 

and attain the Cramer-Rao lower bound, Part II: Range and depth localization 

of a sound source in an ocean waveguide. J. Acoust. Soc. Amer., 2001. In press. 

[70] A. Tolstoy. Sensitivity of matched field processing to sound-speed profile mis- 

match for vertical arrays in a deep water Pacific environment. J. Acoust. Soc. 

Amer., 85:2394-2404, June 1989. 

213 



[71] A. Tolstoy, O. Diachok, and L. N. Frazer. Acoustic tomography via matched 

field processing. J. Acoust. Soc. Amer., 89:1119-1127, March 1991. 

[72] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. John 

Wiley k Sons, New York, 1968. 

[73] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part III. John 

Wiley & Sons, New York, 1971. 

[74] R. J. Urick. Principles of Underwater Sound. McGraw-Hill Book Company, New 

York, 1983. 

[75] G. N. Watson. A Treatise on The Theory of Bessel Functions. Cambridge 

University Press, New York, 1966. 

[76] N. Wax. Selected Papers on Noise and Stochastic Processes. Dover Publications, 

Inc., New York, 1954. 

[77] E. Weinstein and A. J. Weiss. Fundamental limitations in passive time delay 

estimation-Part II: Wide-band systems. IEEE Trans. Acoustics, Speech, and 

Signal Processing, 32:1064-1078, May 1984. 

[78] E. Weinstein and A. J. Weiss. A general class of lower bounds in parameter 

estimation. IEEE Trans. Information Theory, 34:338-342, March 1988. 

[79] A. J. Weiss. Fundamental Bounds in Parameter Estimation. PhD thesis, Tel- 

Aviv University, Tel-Aviv, Israel, 1985. 

[80] A. J. Weiss and E. Weinstein. Fundamental limitations in passive time delay 

estimation-Part I: Narrow-band systems. IEEE Trans. Acoustics, Speech, and 

Signal Processing, 31:472-486, February 1983. 

[81] A. S. Willsky and G. W. Wornell. 6.432 Stochastic Processes, Detection, and 

Estimation: Notes. Massachusetts Institute of Technology, Cambridge, MA, 

1998. 

214 



[82] A. Zeira and P. M. Schultheiss. Realizable lower bounds for time delay estimation. 

IEEE Trans. Signal Processing, 41:3102-3113, November 1993. 

[83] A. Zeira and P. M. Schultheiss. Realizable lower bounds for time delay estimation: 

Part 2 - Threshold phenomena. IEEE Trans. Signal Processing, 42:1001-1007, 

May 1994. 

[84] J. Ziv and M. Zakai. Some lower bounds on signal parameter estimation. IEEE 

Trans. Information Theory, 15:386-391, May 1969. 

215 



Document Library 
Distribution List for Technical Report Exchange—November 1999 

\ 

University of California, San Diego 
SIO Library 0175C 
9500 Gilman Drive 
La Jolla, CA 92093-0175 

Hancock Library of Biology & Oceanography 
Alan Hancock Laboratory 
University of Southern California 
University Park 
Los Angeles, CA 90089-0371 

Gifts & Exchanges 
Library 
Bedford Institute of Oceanography 
P.O. Box 1006 
Dartmouth, NS B2Y 4 A2 
CANADA 

NOAA/EDIS Miami Library Center 
4301 Rickenbacker Causeway 
Miami, FL 33149 

Research Library 
U.S. Army Corps of Engineers 
Waterways Experiment Station 
3909 Halls Ferry Road 
Vicksburg, MS 39180-6199 

Institute of Geophysics 
University of Hawaii 
Library Room 252 
2525 Correa Road 
Honolulu, HI 96822 

Marine Resources Information Center 
Building E38-320 
MIT 
Cambridge, MA 02139 

Library 
Lamont-Doherty Geological Observatory 
Columbia University 
Palisades, NY 10964 

Library 
Serials Department 
Oregon State University 
Corvallis, OR 97331 

Pell Marine Science Library 
University of Rhode Island 
Narragansett Bay Campus 
Narragansett, Rl 02882 

Working Collection 
Texas A&M University 
Dept. of Oceanography 
College Station, TX 77843 

Fisheries-Oceanography Library 
151 Oceanography Teaching Bldg. 
University of Washington 
Seattle, WA 98195 

Library 
R.S.M.A.S. 
University of Miami 
4600 Rickenbacker Causeway 
Miami, FL 33149 

Maury Oceanographic Library 
Naval Oceanographic Office 
Building 1003 South 
1002 Balch Blvd. 
Stennis Space Center, MS 39522-5001 

Library 
Institute of Ocean Sciences 
P.O. Box 6000 
Sidney, B.C. V8L 4B2 
CANADA 

National Oceanographic Library 
Southampton Oceanography Centre 
European Way 
Southampton S014 3ZH 
UK 

The Librarian 
CSIRO Marine Laboratories 
G.P.O. Box 1538 
Hobart, Tasmania 
AUSTRALIA 7001 

Library 
Proudman Oceanographic Laboratory 
Bidston Observatory 
Birken head 
Merseyside L43 7 RA 
UK 

IFREMER 
Centre de Brest 
Service Documentation-Publications 
BP 70 29280 PLOUZANE 
FRANCE 



50272-101 

REPORT DOCUMENTATION 
PAGE 

1. REPORT NO. 

MIT/WHOI 2001-06 
3. Recipient's Accession No. 

4. Title and Subtitle 

Performance Bounds on Matched-Fields Methods for Source Localization and 

Estimation of Ocean Environmental Parameters 

5. Report Date 

June 2001 

7. Authors) 
Wen Xu 

8. Performing Organization Rept. No. 

9. Performing Organization Name and Address 

MIT/WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering 

10. Project/Task/Work Unit No. 

MIT/WHOI  2001-06 
11. Contract(C) or Grant(G) No. 

(C)   N00014-01-1-0257 

(G) 

12. Sponsoring Organization Name and Address 

Office of Naval Research 

13. Type of Report & Period Covered 

Ph.D. Thesis 

14. 

15. Supplementary Notes 

This thesis should be cited as: Wen Xu, 2001. Performance Bounds on Matched-Fields Methods for Source Localization 
and Estimation of Ocean Environmental Parameters. Ph.D. Thesis. MIT/WHOI, 2001-06. 

16. Abstract (Limit: 200 words) 

Matched-field methods concern estimation of source location and/or ocean environmental parameters by exploiting full 

wave modeling of acoustic waveguide propagation. Typical estimation performance demonstrates two fundamental 
limitations. First, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), leading to a threshold 

performance behavior. Second, most matched-field algorithms show a strong sensitivity to environmental/system 
mismatch, introducing some biased estimates at high SNR. 

In this thesis, a quantitative approach for ambiguity analysis is developed so that different mainlobe and sidelobe error 
contributions can be compared at different SNR levels. Two large-error performance bounds, the Weiss-Weinstein bound 

(WWB) and Ziv-Zakai bound (ZZB), are derived for the attainable accuracy of matched-field methods. To include 
mismatch effects, a modified version of the ZZB is proposed. 

Performance analyses are implemented for source localization under a typical shallow water environment chosen from 

the Shallow Water Evaluation Cell Experiments (SWellEX). The performance predictions describe the simulations of the 
maximum likelihood estimator (MLE) well, including the mean square error in all SNR regions as well as the bias at high 

SNR. The threshold SNR and bias predictions are also verified by the SWellEX experimental data processing. These 
developments provide tools to better understand some fundamental behaviors in matched-field performance and provide 
benchmarks to which various ad hoc algorithms can be compared 

17. Document Analysis     a. Descriptors 

Matched-field processing 
Performance bound 
Ambiguity analysis 

b. Identifiers/Open-Ended Terms 

c. COSATI Field/Group 

18. Availability Statement 

Approved for publication; distribution unlimited. 

(SeeANSI-Z39.18) 

19. Security Class (This Report) 

UNCLASSIFIED 
20. Security Class (This Page) 

See Instructions on Reverse 

21. No. of Pages 

215 
22. Price 

OPTIONAL FORM 272 (4-77) 
(Formerly NTIS-35) 
Department of Commerce 


